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Abstract

In this work we provide a new methodology for comparing regression functions m1 and
m2 from two samples. Since apart from smoothness no other (parametric) assumptions
are required, our approach is based on a comparison of nonparametric estimators m̂1 and
m̂2 of m1 and m2, respectively. The test statistics T̂ incorporate weighted differences
of m̂1 and m̂2 computed at selected points. Since the design variables may come from
different distributions a crucial question is where to compare the two estimators. As
our main results we obtain the limit distribution of T̂ (properly standardized) under
the null hypothesis H0 : m1 = m2 and under local and global alternatives. We are
also able to choose the weight function so as to maximize power. Furthermore, the
tests are asymptotically distribution-free under H0 and shift and scale-invariant. Several
of such T̂ ’s may then be combined to get Maximin tests when the dimension of the
local alternative is finite. In a simulation study we found out that our tests achieve the
nominal level and have excellent power already for small to moderate sample sizes. As
to proofs we heavily make use of new results from empirical process theory, U-statistics
and nonparametric curve estimation.
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1 Introduction

In many applied fields, e.g., health science, engineering, agriculture or medicine, it has always
been of interest to choose between two complementary courses of action. For example, medical
researchers often face the problem, that they have to make a decision whether a new treatment
is better than an existing one. Such a comparison should encounter auxiliary information
such as the age of the patient or the size of a tumor at surgery. This kind of problem is related
with studying the relationship between an independent prognostic factor (dose, input) X and
an associated dependent response (output) Y . In the real world the relationship between X
and Y is not completely deterministic but subject to noise. To be more specific, we rather
have

Y = m(X) + ε,

where m is the regression function of Y on X and ε is an error variable orthogonal to X, i.e.,
E(ε|X) = 0. If X = x, then m(x) is the optimal predictor of Y .

In the analysis of two populations, one may be interested to compare the two associated
regression curves. For example, if Y denotes the disease free survival time after surgery,
then m1(x) and m2(x) may denote the expected value of Y under treatment and control,
respectively, given the covariate at surgery equals X = x. If m1(x) = m2(x) for all x,
there will be no systematic difference between the two groups while m1 ≥ m2 but m1 6= m2

indicates an improvement under treatment.

Unfortunately, the two functions m1 and m2 are unknown and need to be estimated from
two samples of data. A proper test for

H0 : m1 = m2 versus H1 : m1 6= m2

or some more specified alternatives may then be based on two estimators m̂1 and m̂2, say.

In an unconditional framework, testing for differences in two means has a long history. Under
the assumption, that the two samples come from a normal population, this resulted in the
famous t-test. If this assumption cannot be justified, the distribution of the test statistic
admits an approximation through a standard normal distribution. In the context of the
Linear Model the F -test provides a way to check the equality of two regression functions in
a particular parametric framework.

To motivate our approach, some further notation is necessary. Let (X1, Y1) and (X2, Y2)
be two measurements on two populations. Assuming E|Y1| < ∞ and E|Y2| < ∞, then the
conditional expectations E[Y1|X1] and E[Y2|X2] exist and allow for factorizations

E[Y1|X1] = m1(X1), E[Y2|X2] = m2(X2)

through the regression functions m1 and m2. Let (X11, Y11), . . . , (X1n1 , Y1n1) and
(X21, Y21), . . . , (X2n2 , Y2n2) be two samples of independent replicates of (X1, Y1) and (X2, Y2),
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respectively. A general class of nonparametric estimators for m1 and m2 was proposed by
Stone (1977). They are of the form

m̂1(x) =

n1
∑

i=1

Y1iW1i(x) m̂2(x) =

n2
∑

i=1

Y2iW2i(x),

where W1i and W2i are proper weights depending on the input data of each sample, preferably
satisfying

∑n1
i=1 W1i(x) = 1 =

∑n2
i=1 W2i(x). Note that these conditions imply that the

resulting m̂’s are scale and shift-equivariant. This means, that if each Yi is replaced by
Y ∗

i = aYi + b for some constants a and b, then the resulting estimator m̂∗ satisfies m̂∗(x) =
am̂(x)+ b. Recall that the sample means are also of this type but with weights W1i(x) = n−1

1

and W2i(x) = n−1
2 not depending on x. Since we want to estimate a function rather than an

unknown parameter, our W1i and W2i will depend on x. Informally speaking Wi(x) attaches
more mass to those Xi’s which are closer to x and less weight to the remote Xi’s. Two of the
most popular estimators of a regression function are

• the Nadaraya-Watson estimator (NW)

• the Nearest-Neighbor estimator (NN).

For the NW-estimator we have for the first sample, e.g.,

W1i(x) =
K
(

X1i−x
h

)

∑n1
j=1 K

(

X1j−x
h

) ,

where h > 0 is an appropriate smoothing parameter (window-width) and K is a symmetric
kernel function. For details, see Nadaraya (1964). Similarly, for the second sample. For the
(symmetrized) NN-estimator, one has to replace X1i by F̂ (X1i), where with n = n1

F̂ (x) = F̂n(x) = n−1
n
∑

j=1

1{X1j≤x}

is the empirical distribution function (d.f.) of the sample X11, . . . , X1n1 . In other words,
F̂n(X1i) is the normalized rank of X1i within the first data set, and W1i(x) becomes

W1i(x) =
K
(

F̂n(X1i)−F̂n(x)
h

)

∑n
j=1 K

(

F̂n(X1j)−F̂n(x)
h

) .

Similarly, for the second sample (with n = n2), we obtain W2i, in which F̂n is replaced by
Ĝ = Ĝn, the empirical d.f. of the X2j , 1 ≤ j ≤ n.

Though, at first sight, the NN-weights seem to be more complicated than the NW-weights,
the resulting NN-estimator has several advantages over the NW-estimator. One disadvantage
of the NW-estimator comes from the fact that the denominator of Wi may become zero or at
least close to zero. This results in an estimator of m which does not admit finite moments.
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In contrast, we will show that the NN-weights have many attractive properties which make
them especially suited for the problems discussed in this paper. A pointwise analysis of this
estimator may be found in Stute (1984).

The next important question to be discussed is where both m̂1 and m̂2 should be compared.
Typically, if X1 ∼ F and X2 ∼ G and F and G have disjoint supports, the testing problem
is more difficult since the information about the two samples is located in separate regions.
If, on the other hand, F is close to G we may expect both X-samples to be mixed up so that
comparing m̂1 and m̂2 only there makes sense. As a conclusion one may say that the points
where m̂1 and m̂2 are to be compared should be chosen in an adaptive way. In this work we
propose averaging each X1i with X2j . By this we obtain data-dependent points which are
located between the two X-samples and therefore constitute a reasonable area on which a
test should be based. Particularly, when both X-samples are mixed up, then the area where
m̂1 and m̂2 are compared coincides more or less with the supports of F and G.

The class of test statistics to be studied first will be linear in the sense that we sum up all
differences

m̂1

(

X1i + X2j

2

)

− m̂2

(

X1i + X2j

2

)

, 1 ≤ i ≤ n1, 1 ≤ j ≤ n2.

As it will turn out it is also important to properly weight each of the above differences, say

by W
(

X1i+X2j

2

)

. The choice of the weight function W is delicate. We shall show how to

choose W in order to maximize power when the direction of the alternative is specified.

Summarizing so far, in this work we first propose and analyze two-sample score test statistics
of the form

T̂ =
1

n1n2

n1
∑

i=1

n2
∑

j=1

W

(

X1i + X2j

2

)[

m̂1

(

X1i + X2j

2

)

− m̂2

(

X1i + X2j

2

)]

. (1.1)

Note that since our m̂1 and m̂2 are scale and shift-equivariant, T̂ is shift-invariant but scale-
equivariant: T̂ ∗ = aT̂ . After that we show how to combine several of these T̂ ’s to create
tests, which are Maximin among tests for H0 versus local alternatives with finite codimension.
Moreover, under H0, these tests will turn out to be asymptotically distribution-free and shift-
and scale-invariant.

To review the literature, Härdle and Marron (1990) analyzed semiparametric models by
comparing nonparametric regression functions under the assumption of fixed equal designs.
The main objective of Hall and Hart (1990) was the discussion of using a bootstrap procedure
for two-sided tests for H0 : m1 = m2 under the assumption, that there are no ties among the
design points which are assumed to be identical in the two groups. King, Hart and Wehrly
(1991) also presented a test based on the difference between two curve estimators from kernel
smoothers when the design points are fixed and equal. Next, Delgado (1993) discussed a test
for the equality of nonparametric regression functions which has characteristics analogous
to the Kolmogorov-Smirnov statistic. His test did not require smoothing and is easy to
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implement. At the same time he required the design points to be fixed in advance and
being equal for the two samples. Young and Bowman (1995) investigated tests for equality
and parallelism across groups with the covariate effect being estimated via Gasser-Müller
smoothing. Kulasekera (1995) presented three tests with common fixed design points or
equal sample sizes not being necessary. The first two tests are based on Quasi-Residuals
techniques while the last test is based on estimators of the variances of the error distributions.
Furthermore, Kulasekera and Wang (1997) examined selection of smoothing parameters which
effect the power in the three nonparametric tests of Kulasekera (1995).

In Hall, Huber and Speckman (1997) one-sided test statistics for two functional means using
an interpolation-based approach were proposed. Their test can be used when means of
treatment effects are continuous functions of the covariates and the design sequences are
random samples from different densities in two samples. Munk and Dette (1998) investigated
a consistent test for the comparison of two regression functions with fixed but unequal design
points. In their test they evaluate the difference between two curves based on a weighted
L2 distance. Next, Dette and Neumeyer (2001) provided three test statistics, the first of
which was based on a linear combination of estimators for the integrated variance function.
The second used one-way analysis of variance in the framework of non-parametric curve
estimation, while the third applied Munk and Dette’s (1998) approach for testing the equality
of k regression functions from independent samples. Again, the design points were non-
random but nonnecessarily equal. Finally, Neumeyer and Dette (2003) introduced a test for
the comparison of two regression curves which is based on a difference of two marked empirical
processes based on residuals obtained under the assumption of equal regression curves. Their
test can detect alternatives converging to the null model at the rate (n1 + n2)

−1/2, where n1

and n2 denote the two sample sizes.

Summarizing, most of the papers cited so far only deal with fixed design. Many times even
equal sample sizes and equal design points were required. Notable exceptions are Scheike
(2000) and Neumeyer and Dette (2003) who seem to be the first to study tests for equality
of regression curves under random design. Scheike (2000) modified the integrated regression
approach proposed by Stute (1997) and replaced the empirical integrals by the Lebesgue
integral. By this he compared the two regression estimators on areas which do not depend
on the data and therefore may not contain relevant information. Neumeyer and Dette (2003)
compare two Nadaraya-Watson estimators. The problem with these estimators is the fact
that their denominators may be very unstable. For this reason, Neumeyer and Dette (2003)
only compared the numerators which are estimators of m1f and m2g, respectively. Here f
and g are the densities of the input variables in each of the two samples. The approximation
by the limit distribution is not satisfactory so that a bootstrap is proposed. Also their test
is not shift- and scale-invariant.

For other related work on the subject, we also refer to Koul and Schick (1997, 2003), Lavergne
(2001), Gørgens (2002) and Pardo-Fernandéz et al. (2006). In most of this work, a detailed
analysis of the power of the tests is missing.

Also the discussion of the role played by the design distributions F and G is often misleading.
One can often find an argument that F and G can be assumed “without loss of generality”
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to be supported by the unit interval. In other areas of statistics like Robust Statistics, such a
remark would probably raise some “objection”, for good reason. For example, suppose that F
and G are known and continuous. Then one may transform each X1i to Ui = F (X1i), which
is uniform on the unit interval. As a consequence the regression of Y1i given Ui becomes
m1 ◦ F−1, which is defined on the open unit interval and is typically unbounded there. So a
transformation of the input data also has some consequences for the regression to the effect
that the new regression does not satisfy the regularity assumptions traditionally appearing in
the literature on smoothing. As a consequence the distributions F and G do play an intrinsic
role for designing tests for equality in regression.

In this paper we restrict ourselves to the null hypothesis H0 : m1 = m2. We only mention
that our approach can be extended to the null model when m1 and m2 are supposed to differ
by a function u(x, θ). In such a situation we need to replace m̂1 − m̂2 by m̂1 − m̂2 − u(·, θ̂),
where θ̂ is a consistent estimator of θ. Details are omitted.

Our final comment is on the decomposition Y = m(X) + ε. For random design, this de-
composition just involves orthogonality of X and ε. No independence between X and ε is
to be imposed, nor do we require that ε = σ(X)η, where η is independent of X. Actually,
our paper also covers the case of discrete Y ’s, and it is known that, e.g., in dichotomous or
Poisson regression such assumptions do not hold.

Summarizing, in this paper we provide a discussion and analysis of tests which take into
account

• the design distributions F and G

• a detailed study of local power

• distribution-freeness under H0

• heteroscedasticity of the noise variables

• possible discrete Y ’s

• good finite sample approximations

• shift and scale-invariance

• construction of Maximin tests

2 Main Results

In this chapter we will present the main results of our work. Theorem 2.1 contributes a
martingale representation of T̂ , i.e., a representation of T̂ as a martingale, a negligible term
and a deterministic term which vanishes under H0 but is in charge of the power under H1. It is
interesting to note that the martingale part does not have independent identically distributed
(i.i.d.) but dependent summands. In Theorem 2.2 we apply the martingale CLT to derive
the asymptotic normality of

√
NT̂ , where N is a proper standardizing factor depending on

the individual sample sizes n1 and n2. After that we answer the question how to choose the
weight function W in order to maximize local power of the test, when the two m’s differ by
a multiple of a fixed function s. An interesting extension investigates alternative models, in
which the difference is a function spanned by finitely many directions s1, . . . , sd.

In the limit the test statistic has a χ2
d-distribution under H0 so that critical values are readily

available. In particular, the test is asymptotically distribution-free under H0. Under H1, the
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test has a noncentral χ2
d-distribution. As it will turn out our test is Maximin. We also show

that it is consistent when the alternative is fixed. Finally we will see that the test is shift-
and scale invariant. In Chapter 3 we report on various simulation results. Proofs will be
deferred to Chapter 4.

We already briefly mentioned that the power of our test will heavily depend on W . Another
issue is the choice of the smoothing kernel K and the bandwidth h > 0. As to K, we require
assumptions which are standard in the literature:

(K) (i) K(x) = K(−x) for x ∈ R and K is nonnegative and nondecreasing on the negative
real line.

(ii)
∫

K(x)dx = 1.

(iii) K has compact support and is twice continuously differentiable.

Condition (ii) is made only for convenience. In the case
∫

K(x)dx = c 6= 0 we may replace K
with K/c without changing the NN-weights and hence our estimators m̂1 and m̂2. Also the
assumption (iii) could be weakened and replaced by K(x) → 0 sufficiently fast as x → ±∞.
It is needed to exploit the local structure of the data. The symmetry condition as always
is to control the bias in estimating m1 and m2. The monotonicity is helpful to bound the
difference between the Lebesgue-integral of K and approximating Riemann sums.

As to the sample sizes n1 and n2, as always in two-sample problems, we have to guarantee that
the information contained in the two samples is approximately proportional. This property
may be expressed through

(N)
n1

n1 + n2
→ λ and

n2

n1 + n2
→ 1 − λ where 0 < λ < 1.

Condition (N) implies some balance between the two samples. In terms of n1 and n2 the
standardizing factor for T̂ will be

√
N where

N =
n1n2

n1 + n2
.

Our next assumption will concern the bandwidth h. Actually h = hn1,n2 with h → 0 as
n1, n2 → ∞. A proper choice of h is always a delicate question. A larger h would incorporate
neighbors at a larger distance and destroy the local flavor of m̂1 and m̂2. On the other hand,
a small h would give rise only to few neighbors resulting in m̂1 and m̂2 with a small bias but
a larger variance. As a consequence h should converge to zero at a proper rate only. As it
will turn out in our situation

(h) h → 0 as n−β, where 1
4 < β < 1

3 and n has the order of n1 and n2.

This choice of h guarantees

(i) nh3 → ∞ as n → ∞

(ii) nh4 → 0 as n → ∞
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Since under H0 the limit distribution of
√

NT̂ is known, a data driven choice of h could be
taken from bootstrap samples in such a way, that the bootstrap distribution of

√
NT̂ is the

closest to its limit. Due to lack of space this will be, however, not further pursued in this
paper.

Also the smoothness conditions to follow are standard:

(S) f, g, m and W are twice continuously differentiable.

Finally, we have to guarantee that the second moments of our (approximating) terms exist:

(M) For ρ2
1 and ρ2

2 from (2.2) and (2.3) below we have ρ2
1 < ∞, ρ2

2 < ∞.

To formulate our first result, recall that the null hypothesis always is

H0 : m2 = m1.

The (local) alternative considered in Theorem 2.1 below will be

m2 = m1 +
cs√
N

,

where the function s is specified and determines the direction of the deviation between m1

and m2. The choice of c = 0 again leads to m1 = m2. Also recall that X11 ∼ F and X21 ∼ G
are the unknown distributions of the design variables with densities f and g. Furthermore,
let H be the d.f. of the (X1i + X2j)/2 and h its Lebesgue density.

Theorem 2.1 Under (K), (N), (h), (S) and (M), assume

m2 = m1 +
cs√
N

. (2.1)

Then we have the following expansion of T̂ :

√
NT̂ =

√
1 − λ n

1/2
1

n1
∑

i=1

(Y1i − m1(X1i))

∫

W (x)W1i(x)H(dx)

−
√

λ n
1/2
2

n2
∑

i=1

(Y2i − m2(X2i))

∫

W (x)W2i(x)H(dx)

−c

∫

W (x)s(x)H(dx) + oP(1).

Note that in each sum the summands form a martingale difference array. Also both sums are
independent. An application of the CLT for martingale difference arrays yields the following
result.
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Theorem 2.2 Under the assumptions of Theorem 2.1 we have

√
NT̂

L−→ N (µ, σ2) as N → ∞,

where

µ = −c

∫

W (x)s(x)H(dx)

and
σ2 = (1 − λ)ρ2

1 + λρ2
2.

Here L denotes convergence in distribution. Furthermore,

ρ2
1 =

∫

σ2
1(x)W 2(x)

h(x)

f(x)
H(dx) (2.2)

ρ2
2 =

∫

σ2
2(x)W 2(x)

h(x)

g(x)
H(dx), (2.3)

where σ2
1(x) and σ2

2(x) are the conditional variances of Y11 given X11 = x and Y21 given
X21 = x, respectively. In the homoscedastic case σ2

1 and σ2
2 are constants.

Note that for c = 0, i.e., under H0, we have µ = 0. Let σ̂ be a consistent estimator of σ.
Then, under H0, √

NT̂

σ̂

L−→ N (0, 1).

It is easy to see that σ is shift-invariant and scale-equivariant. Typically, σ̂ also has the same
properties. Conclude that T̂ /σ̂ is scale and shift-invariant, as is the test to be discussed now.
Let 0 < α < 1 be a given significance level and denote with q1−α

2
the 1− α

2 quantile of N (0, 1).
Then, by Theorem 2.2,

P

(∣

∣

∣

∣

∣

√
NT̂

σ̂

∣

∣

∣

∣

∣

≥ q1−α
2

)

→ α.

Therefore, we reject H0 if and only if
∣

∣

∣

√
NT̂
σ̂

∣

∣

∣
≥ q1−α

2
.

Next we discuss the local power of the test in connection with the choice of W . We want to
test (2.1) with c = 0 versus c 6= 0. Under H1,

√
NT̂

σ̂

L−→ N (
µ

σ
, 1).

Hence the asymptotic power of |T̂ | equals

lim
N→∞

PH1

(∣

∣

∣

∣

∣

√
NT̂

σ̂

∣

∣

∣

∣

∣

≥ q1−α
2

)

= P(|ξ0 +
µ

σ
| ≥ q1−α

2
),

where ξ0 ∼ N (0, 1). But

P(|ξ0 +
µ

σ
| ≥ q1−α

2
) = 1 −

[

Φ(
µ

σ
+ q1−α

2
) − Φ(

µ

σ
− q1−α

2
)
]

. (2.4)
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This is a monotone increasing function of |µσ |. Therefore it remains to find the W which
maximizes µ2/σ2. Write (with c = 1)

µ2

σ2
=

[
∫

W (x)s(x)H(dx)]2
∫

a2(x)W 2(x)H(dx)
. (2.5)

with

a2(x) = (1 − λ)σ2
1(x)

h(x)

f(x)
+ λσ2

2(x)
h(x)

g(x)
.

It is easy to see that (2.5) is maximized for

W0 =
s

a2
. (2.6)

In fact, for this choice of W , (2.5) becomes

µ2

σ2
=

∫

s2

a2
dH. (2.7)

The asymptotic (local) power (2.4) is determined through µ2/σ2 as in (2.7). Whereas the
function s is given, the function a2 incorporates terms (like σ2

1, σ
2
2, f, g) which depend on the

data and therefore cannot be controlled by the statistician.

Now, µ2

σ2 and hence power becomes large when a2 is small. This means, that the error of the
second kind gets small with a2. On the other hand, a2 becomes small when σ2

1 and σ2
2 are

small. This only expresses the fact that the risk for making an error of the second kind is
smaller when m1(X1) and m2(X2) can be better reconstructed from Y1 and Y2 than in the
other case, i.e., when σ2

1 and σ2
2 are big.

Typically, if the supports of f and g do not have much in common, the testing problem is more
difficult since most of the information about the two samples is located in separate regions.
By averaging X1i and X2j we obtain data-dependent points which are located between the two
X-samples and therefore provide a reasonable area at which the two m’s may be compared.
If the two supports, however, more or less coincide, the situation is less dramatic, since the
X1i and X2j fall into the same area so that also the (X1i +X2j)/2 are located here. In terms
of power and hence of error of the second kind the first situation is therefore more difficult.
We can easily see that when we look at a2 more closely. Actually, in the first situation both
h/f and h/g are typically large on the support of H so that µ2/σ2 is small and the error
of the second kind becomes large. Alternatively, if F and G do not differ much, then the
support of (X1i + X2j)/2 coincides more or less with the support of F and G. The functions
h, f and g are of a similar order so that a2 is moderately small, as is the error of the second
kind.

Next we show how to estimate σ2, say by σ̂2. Recall

σ2 = (1 − λ)ρ2
1 + λρ2

2,
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(2.2) and (2.3). Replacing H with Hn, the empirical d.f. of the X1k+X2l
2 , Theorem 2.1 and

the proof of Theorem 2.2 suggest the following estimator of σ2:

σ̂2 :=
n1n2

n1 + n2

n1
∑

i=1

(Y1i − m̂1(X1i))
2

[∫

W (x)W1i(x)Hn(dx)

]2

+
n1n2

n1 + n2

n2
∑

j=1

(Y2j − m̂2(X2j))
2

[∫

W (x)W2j(x)Hn(dx)

]2

.

Note that
∫

W (x)W1i(x)Hn(dx) =
1

n1n2

n1
∑

k=1

n2
∑

l=1

W

(

X1k + X2l

2

)

W1i

(

X1k + X2l

2

)

∫

W (x)W2j(x)Hn(dx) =
1

n1n2

n1
∑

k=1

n2
∑

l=1

W

(

X1k + X2l

2

)

W2j

(

X1k + X2l

2

)

.

It is easy to see that σ̂ is shift-invariant but scale-equivariant.

Next we discuss a more general alternative than (2.1), namely

m2 = m1 + N−1/2
d
∑

j=1

γjsj . (2.8)

For example, if sj(x) = xj−1, 1 ≤ j ≤ d, then (2.8) is tantamount to saying, that m1 and
m2 differ by a polynomial of degree d − 1. In particular, for d = 1, m1 and m2 differ only
by a constant and are therefore parallel. Other choices for sj are trigonometric polynomials
of different frequencies or basic splines. In general, s1, . . . , sd are finitely many functions
which may be appropriately chosen once the testing problem (i.e., the alternative model) is
specified. The null model corresponds to γ1 = . . . = γd = 0.

In the following we shall derive Maximin tests for H0 : m1 = m2 versus ‖γ‖ ≥ a > 0, where
γt = (γ1, . . . , γd) is the vector of coefficients and ‖ · ‖ is a proper norm. Note that the model
under H1 is semiparametric since m1, m2 are not specified and the space spanned by s1, . . . , sd

is parametric.

In view of what we found for d = 1, i.e., model (2.1), we consider the vector of score-statistics
(1.1) for W1, . . . , Wd with

Wj =
sj

a2
,

say
T̂ = (T̂ 1, . . . , T̂ d)t.

Then Theorem 2.1 implies, under (2.8), with s =
∑d

j=1 γjsj and c = 1, for each 1 ≤ j ≤ d:

√
NT̂ j =

√
1 − λ n

1/2
1

n1
∑

i=1

(Y1i − m1(X1i))

∫

Wj(x)W1i(x)H(dx)

−
√

λ n
1/2
2

n2
∑

i=1

(Y2i − m2(X2i))

∫

Wj(x)W2i(x)H(dx)

11



−
∫

Wj(x)s(x)H(dx) + oP(1).

Therefore,

√
N







T̂ 1

...

T̂ d






=

√
1 − λn

1/2
1

n1
∑

i=1

(Y1i − m1(X1i))







∫

W1(x)W1i(x)H(dx)
...

∫

Wd(x)W1i(x)H(dx)







−
√

λn
1/2
2

n2
∑

i=1

(Y2i − m2(X2i))







∫

W1(x)W2i(x)H(dx)
...

∫

Wd(x)W2i(x)H(dx)







−







∫

W1(x)s(x)H(dx)
...

∫

Wd(x)s(x)H(dx)






+ oP(1).

From the multivariate version of Theorem 2.2 the first two sums converge in distribution to√
1 − λ Nd(0, Σ1) and

√
λ Nd(0, Σ2), respectively, where Σ1 = (ρ1

ij) and Σ2 = (ρ2
ij), with

ρ1
ij =

∫

σ2
1(x)

h2(x)

f2(x)
Wi(x)Wj(x)F (dx)

=

∫

σ2
1(x)

h(x)

f(x)
Wi(x)Wj(x)H(dx)

ρ2
ij =

∫

σ2
2(x)

h2(x)

g2(x)
Wi(x)Wj(x)G(dx)

=

∫

σ2
2(x)

h(x)

g(x)
Wi(x)Wj(x)H(dx).

By the independence of the two samples we get

√
NT̂ =

√
N







T̂ 1

...

T̂ d







L−→ Nd(0, Σ) −







∫

W1sdH
...

∫

WdsdH







with Σ = (ρij) and

ρij = (1 − λ)ρ1
ij + λρ2

ij =

∫

a2WiWjdH.

Write






∫

W1sdH
...

∫

WdsdH






=







∫

W1s1dH . . .
∫

W1sddH
...

...
∫

Wds1dH . . .
∫

WdsddH













γ1
...

γd







and notice that for Wj =
sj

a2 , 1 ≤ j ≤ d, we have

∫

WisjdH =

∫

a2WiWjdH = ρij .

12



In summary, we have

√
NT̂

L−→ Nd(0, Σ) − Σ







γ1
...

γd






(2.9)

Under the null model: √
NT̂

L−→ Nd(0, Σ). (2.10)

These results allow us to apply some existing Maximin Theory. See Strasser (1985) for
details. Namely, for a given significance level 0 < α < 1, let c1−α be the 1−α quantile of the
χ2

d-distribution. Put
t = 1{NT̂ tΣ−1

n T̂≥c1−α}. (2.11)

Theorem 2.3 For a given significance level 0 < α < 1, the test t from (2.11) is a Maximin
test for H0 : m1 = m2 versus (2.8) with H1 : γtΣγ ≥ a. The asymptotic Maximin power is
given by P(χ2

d(a) ≥ c1−α), where now a is the noncentrality parameter.

Proof. That t is an asymptotic level α-test follows from (2.10):

PH0(t = 1) = PH0(NT̂ tΣ−1
n T̂ ≥ c1−α)

→ P(ξtΣ−1ξ ≥ c1−α),

where ξ ∼ Nd(0, Σ). Write ξ = Aξ0, where ξ0 ∼ Nd(0, Id) and A satisfies Σ = AAt. Conclude
that

P(ξtΣ−1ξ ≥ c1−α) = P(ξt
0ξ0 ≥ c1−α) = α.

Under the local alternative (2.8), we obtain from (2.9) with γt = (γ1, . . . , γd):

PH1(t = 1) → P((ξ − Σγ)tΣ−1(ξ − Σγ) ≥ c1−α)

= P((ξ0 − Atγ)t(ξ0 − Atγ) ≥ c1−α).

Note that (ξ0 − Atγ)t(ξ0 − Atγ) has a χ2
d(a)-distribution with noncentrality parameter

a ≡ ‖Atγ‖2 = γtAAtγ = γtΣγ.

�

The test t is asymptotically distribution-free under H0. In our simulation studies we consid-
ered optimal and suboptimal W ’s. Suboptimal W ’s need to be considered when the sj ’s are
not specified. In such a situation we propose for the Wj ’s a collection of polynomials and
trigonometric polynomials. Also some basic splines may be added.

Our final result deals with the case of fixed alternatives. It shows that our test is consistent.

Theorem 2.4 Under H1 : m1 6= m2 fixed we have, when
∫

W (m1 − m2)dH 6= 0, that
P(t = 1) → 1

All proofs are postponed to Chapter 4.
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3 Simulation Study

In this chapter we empirically investigate how our tests perform in finite samples. As in the
previous chapters let m1 be the unknown regression function for the first sample. For m2 we
assume

m2 = m1 + N−1/2cs.

Here the function s determines the direction in which m2 deviates from m1, while the scalar
c is in charge of the amount of deviation. Clearly, c = 0 is equivalent to the validity of H0.

We already indicated before that the power of our tests will be influenced by the design
distributions F and G. It is to be expected that if F = G it may be easier to detect
differences between m1 and m2 than in a situation when F 6= G. At the same time, since

Y1 = m1(X1) + ε1 and Y2 = m2(X2) + ε2,

the noise variables ε1 and ε2 will also have an impact on the power. For example, the
situation may deteriorate when the variances σ2

1 = Var(ε1) and σ2
2 = Var(ε2) increase so that

information on m contained in the Y ’s may be heavily blurred. Needless to say, the power
of the test will depend on c. When c = 0, we expect that the empirical level of the test, i.e.,
the percentage of times we reject H0 though it is true, is close to the nominal level. Another
important feature is the choice of the weight function. It will be interesting to see how the
power decreases if rather than optimal weights, we take suboptimal W ’s. This question is
important because we may be interested in the test also with respect to deviations other than
into direction s.

Simulations were implemented in S-PLUS, Version 6.0 Release 1, of the Data Analysis Prod-
ucts Division of MathSoft Inc., Seattle/Washington, USA, and performed on Sun SPARC
stations under Sun OS 5.9.

In each of the simulations the errors ε1 and ε2 were independent of X1 and X2, respectively,
with ε1 ∼ N (0, 1) and ε2 ∼ N (0, 1.52). The number of replications of each Monte Carlo
experiment was M = 500. The nominal level always equals α = 0.05. For K we took the
standard Gaussian kernel, while for β in (h) we set β = 7

24 , but also other h’s were considered
to demonstrate the influence of the bandwidth. For m1 we considered the two cases

m1(x) = 1 + 2x (affine case) (3.1)

and

m1(x) = 1 + 2x +
1

2
x2 (quadratic case). (3.2)

For s, i.e., for the alternative models we studied three different examples: s1(x) = 9 (constant
shift), s2(x) = 9 + 2x (affine shift), s3(x) = 9 + 2x − 1

2x2 (quadratic shift).

In the tables to follow we report on the empirical level of the tests under H0 and their power
under H1, for various choices of c. The reported results are part of a much larger study which
because of lack of space cannot be discussed in detail.
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In Table 1 below X1 and X2 will have the same standard normal distribution: F = N (0, 1) =
G. The function m1 equals (3.1) while h = 0.2. Under H1, we always put c = 1 so that

m2(x) = m1(x) +
1√
N

si(x) for 1 ≤ i ≤ 3.

Under H0, c = 0. Empirical levels and power are always boldface.

Table 1: Percentages of Rejection

s1 s2 s3

n1 = 25 n2 = 30 c = 0 : 0.05 c = 0 : 0.05 c = 0 : 0.05

c = 1 : 1 c = 1 : 1 c = 1 : 1
n1 = 50 n2 = 60 c = 0 : 0.06 c = 0 : 0.06 c = 0 : 0.06

c = 1 : 1 c = 1 : 1 c = 1 : 1
n1 = 100 n2 = 120 c = 0 : 0.07 c = 0 : 0.07 c = 0 : 0.07

c = 1 : 1 c = 1 : 1 c = 1 : 1

We see that the power is always one! The attained level equals α in the first row but is
slightly larger when n1 and n2 increase. This is due to the fact that we kept h = 0.2 fixed
but changed the n’s. Later we shall also adjust h.

We mentioned several times that in the random design case the distributions F and G may
have an impact on the power of the test. Therefore, in the following, we study situations
when F and G vary in several aspects. In the first case, F and G will be again normal with
equal means but unequal variances:

F = N (0, 1) and G = N (0, 4).

The function m1 equals (3.1) while s1, s2 and s3 are the same as before. Moreover, we have
varied h to learn more about the influence of the bandwidth.

Table 2: Percentages of Rejection (n1 = 25, n2 = 30)

c = 0 c = 1

s1 : 0.24 s1 : 1
h = 0.05 s2 : 0.15 s2 : 1

s3 : 0.14 s3 : 1

s1 : 0.09 s1 : 1
h = 0.1 s2 : 0.09 s2 : 1

s3 : 0.08 s3 : 1

s1 : 0.07 s1 : 1
h = 0.2 s2 : 0.06 s2 : 1

s3 : 0.06 s3 : 1

Again the power is one. We also see that the bandwidth h = 0.05 leads to a level which is
too large compared with α. This is also covered by our theoretical results which require h to
be of the order N−β , 1

4 < β < 1
3 . Note that in our case N = 13.6.

15



We also simulated a model where F and G differ in mean but are equal in variance: F =
N (0, 1) and G = N (1, 1). The results were more or less the same. In each case the power
was one, and the nominal level was attained for h = 0.2. Finally, we studied the case when F
and G were as above but m1 was quadratic. Again, the power was one, but for small sample
size the attained level was between 0.10 and 0.15. This relatively bad performance under H0

is due to the fact that for these F and G and quadratic m’s, the curvature of m is responsible
for a less satisfactory fit of m1 on the right side of the center of G, namely 1. Hence the
quality of the normal approximation suffers from some bias for very small sample size.

The fact that in the preceding examples the power was always one though the alternative
model had local character indicates that c = 1 was still too big to obtain less than 100%
rejections. In the following we therefore study the power for decreasing c’s. The parameters
were as in Table 1: F = N (0, 1) = G with σ1 = 1, σ2 = 1.5, M = 500, α = 0.05, while
sample sizes were n1 = 50 and n2 = 60. The function m1 was again m1(x) = 1 + 2x, while h
was set h = 0.10.

Table 3: Percentages of Rejection

s1 s2 s3

c = 0.5 0.94 0.950 0.936

c = 0.1 0.156 0.132 0.137

c = 0.05 0.094 0.090 0.086

Similar results were obtained when m1 was quadratic. Even for c = 0.5 the power is excellent.
Since in our case N = 27.3 the case c = 0.1 belongs to the alternative m2(x) = m1(x) +
0.02s(x), which is very close to m1 on the support of F and G, so that the low power is not
surprising.

It is interesting to compare loss in power when rather than W0 we choose W ≡ 1 not depending
on s and the function a. According to Table 3, when s = s1 and c = 0.5 we get power 0.94
while with the suboptimal W we obtain power 0.924 under h = 0.1 and power 0.908 under
h = 0.05. Hence, in this situation the loss is moderate so that one may say that our tests are
robust in neighborhoods of the assumed model.

Table 4: Percentages of Rejection

s = s1 W ≡ 1 Power

c = 0.50 h = 0.10 n1 = 25 n2 = 30 N = 13.6 0.9
n1 = 50 n2 = 60 N = 27.3 0.924

n1 = 100 n2 = 120 N = 54.5 0.926

h = 0.05 n1 = 25 n2 = 30 N = 13.6 0.858

n1 = 50 n2 = 60 N = 27.3 0.908

n1 = 100 n2 = 120 N = 54.5 0.914

We end our simulation studies with a comparison of the results obtained by Neumeyer and
Dette (2003). In their simulation study they considered, in our notation, only the case when
F and G were the same and equal the uniform distribution on [0, 1]. Moreover, α = 0.05, n1 =
25, n2 = 50, σ2

1 = 1
2 and σ2

2 = 1
4 . Then the following nine situations were considered:
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(i) m1 = m2 = 1

(ii) m1(x) = m2(x) = expx

(iii) m1(x) = m2(x) = sin(2πx)

(iv) m1(x) = 1, m2(x) = m1(x) + x

(v) m1(x) = exp x, m2(x) = m1(x) + x

(vi) m1(x) = sin(2πx), m2(x) = m1(x) + x

(vii) m1(x) = 1, m2(x) = m1(x) + sin(2πx)

(viii) m1(x) = exp x, m2(x) = m1(x) + sin(2πx)

(ix) m1(x) = sin(2πx), m2(x) = 2 sin(2πx)

In the following tables we compare the attained levels and the power of our score tests (ST)
with those of the Neumeyer-Dette (ND) tests. The results for ND were taken from Neumeyer
and Dette (2003), Table 2. For ST we took h = 0.2 as in Table 1.

Table 5: Percentages of Rejection
Model ND ST

(i) 0.05 0.06 (0.07)
(ii) 0.06 0.07 (0.06)
(iii) 0.06 0.07 (0.07)
(iv) 0.78 0.87

(v) 0.80 0.90

(vi) 0.70 0.85

(vii) 0.18 0.99

(viii) 0.20 0.99

(ix) 0.13 0.99

The first three situations deal with the null model. We applied our test twice, with the W ’s
associated with s(x) = x and s(x) = sin(2πx). The attained levels are almost identical. The
power of the ST-test is excellent and clearly outperforms the ND-test. As Scheike’s (2000)
test also the ND-test is unable to detect differences in m1 and m2 when they cross each other.

To get a visual impression we plot optimal W ’s for several selected situations. In each case
the variances of the noise variables were as before, namely σ2

1 = 1 and σ2
2 = 1.52. For our n1

and n2, λ always equals 5
11 . From (2.6) and the definition of the function a we see that W0

depends on s and the design distributions F and G.

In the following, when we talk about down- and upweighting through the function W , one
should have in mind that the test statistic in (2.11) is invariant w.r.t scaling of W , i.e., the
test statistic based on W is the same as that for bW , where b 6= 0 is a non-vanishing constant.
Hence the shape of W only provides a comparison of weights in different areas relative to
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each other. For example, a large value of W in the tails just means that W upweights the
influence of the extreme (X1i + X2j)/2 relative to the central ones.

Figure 1 depicts the optimal W0 when F = N (0, 1) = G and s ≡ 9 is a constant. Hence
we are testing for H0 versus parallel but different m’s. It turns out that W0 downweights
m̂1 − m̂2 at pairs (X1i + X2j)/2 which are between -1.5 and 1.5 but upweights those which
are in the left or right tails. W0 is almost symmetric. The slight asymmetry is caused by the
fact that λ 6= 1

2 and σ1 6= σ2. The increase of W0 in the tails comes from the fact that though
f and g are small there, the function h being the Gaussian density pertaining to N (0, 1

2), is
more concentrated at zero and therefore has even less mass in the tails. Informally speaking,
since we may expect less (X1i + X2j)/2 in the tails, it is up to the function W to generate a
microscoping effect there for checking possible deviations. Similar but appropriately modified
comments also apply to the other cases to be discussed now.

x

W
0

( 
x
)

-2 -1 0 1 2

0
5

0
1

0
0

1
5

0

Figure 1: W0 for F = N (0, 1) = G and s = 9

x

W
0
( 

x
)

-1 0 1 2

0
5
0

1
0
0

1
5
0

2
0
0

Figure 2: W0 for F = N (0, 1) = G and s(x) = 9 + 2x

In Figure 2 W0 is heavily asymmetric. The test statistic upweights differences of m̂1 and m̂2

evaluated at large points. Under H1, large differences may be expected particularly there
so that W0 takes special care of this area. Figure 3 belongs to s ≡ 9. F and G have equal
means but differ in their variances. The resulting W0 has two modes near -2 and +2. Slight
asymmetries are again caused by λ 6= 1

2 .
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Figure 3: W0 for F = N (0, 1), G = N (0, 4) and s(x) ≡ 9

4 Proofs

In this section we first derive the martingale representation of T̂ as formulated in Theorem
2.1 For this, write

T̂ =

∫ ∫

W

(

x1 + x2

2

)[

m̂1

(

x1 + x2

2

)

− m̂2

(

x1 + x2

2

)]

F̂ (dx1)Ĝ(dx2). (4.1)

Introducing

x =
x1 + x2

2

we may expand T̂ into

T̂ =

∫ ∫

W (x)[m̂1(x) − m̂2(x)][F̂ (dx1) − F (dx1)][Ĝ(dx2) − G(dx2)] (4.2)

+

∫ ∫

W (x)[m̂1(x) − m1(x)]F (dx1)[Ĝ(dx2) − G(dx2)] (4.3)

−
∫ ∫

W (x)[m̂2(x) − m2(x)]F (dx1)[Ĝ(dx2) − G(dx2)] (4.4)

+

∫ ∫

W (x)[m̂1(x) − m1(x)][F̂ (dx1) − F (dx1)]G(dx2) (4.5)

−
∫ ∫

W (x)[m̂2(x) − m2(x)][F̂ (dx1) − F (dx1)]G(dx2) (4.6)

+

∫ ∫

W (x)[m̂1(x) − m1(x)]F (dx1)G(dx2) (4.7)

−
∫ ∫

W (x)[m̂2(x) − m2(x)]F (dx1)G(dx2) (4.8)

+

∫ ∫

W (x)[m1(x) − m2(x)][F̂ (dx1) − F (dx1)]G(dx2) (4.9)

19



+

∫ ∫

W (x)[m1(x) − m2(x)]F (dx1)[Ĝ(dx2) − G(dx2)] (4.10)

+

∫ ∫

W (x)[m1(x) − m2(x)]F (dx1)G(dx2). (4.11)

In our first lemma we derive some useful bounds for our NN-weights.

Lemma 4.1 Let X1, . . . , Xn be a sample of independent random variables from a continuous
d.f. F with empirical d.f. F̂ . Assume (K). Then we have, for all x ∈ R and h > 0,

1

nh

n
∑

i=1

K

(

F̂ (Xi) − F̂ (x)

h

)

≤ 1 +
K(0)

nh
(4.12)

1

nh

n
∑

i=1

K

(

F̂ (Xi) − F̂ (x)

h

)

≥
0
∫

−F̂ (x)/h

K(z)dz +

1−F̂ (x)
h

+ 1
nh

∫

1/nh

K(z)dz. (4.13)

Proof. By continuity of F , the sample contains, with probability one, no ties. Hence

1

nh

n
∑

i=1

K

(

F̂ (Xi) − F̂ (x)

h

)

=
1

nh

n
∑

i=1

K

(

i
n − F̂ (x)

h

)

.

Since K is nondecreasing on (−∞, 0] the sum over 1 ≤ i ≤ nF̂ (x) − 1 is bounded from

above by 1
h

F̂ (x)
∫

−∞
K
(

y−F̂ (x)
h

)

dy, while the sum over nF̂ (x) + 1 ≤ i ≤ n is bounded by

1
h

∞
∫

F̂ (x)

K
(

y−F̂ (x)
h

)

dy. Hence (4.12) follows immediately from
∫

K(z)dz = 1. With a sim-

ilar argument we obtain (4.13). �

Note that the upper bound in (4.12) does not depend on x and F̂ . In particular, the upper
bound tends to one uniformly in x as n → ∞, in view of nh → ∞. The lower bound,
however, does depend on F̂ (x). To obtain a pointwise limit, fix x such 0 < F (x) < 1. Since
F̂ (x) → F (x) by the Strong Law of Large Numbers (SLLN) the right hand side of (4.13)
tends to 1. Together with (4.12) we therefore get

Corollary 4.2 For each x with 0 < F (x) < 1 with probability one

lim
n→∞

1

nh

n
∑

i=1

K

(

F̂ (Xi) − F̂ (x)

h

)

= 1.

As to a uniform lower bound, we have to consider two cases separately:
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• If F̂ (x) ≥ 1/2, then the right hand side of (4.13) exceeds

0
∫

−F̂ (x)/h

K(z)dz ≥
0
∫

−1/2h

K(z)dz.

• If F̂ (x) < 1/2, then the right hand side of (4.13) exceeds

1−F̂ (x)
h

+ 1
nh

∫

1/nh

K(z)dz ≥
1/2h+1/nh
∫

1/nh

K(z)dz.

Now, since h → 0, K has compact support with integral 1 and is symmetric at zero,

0
∫

−1/2h

K(z)dz = 1/2 for all small enough h > 0.

On the other hand
1/2h+1/nh
∫

1/nh

K(z)dz =

∞
∫

1/nh

K(z)dz ≥ 1

2
− ε,

for all small enough h > 0, where ε > 0 is an arbitrary number.

Corollary 4.3 For all small enough h > 0, we have uniformly in x and for all samples

1

nh

n
∑

i=1

K

(

F̂ (Xi) − F̂ (x)

h

)

≥ 1

2
− ε.

For some purposes the uniform lower bound in Corollary 4.3 is not sufficient. Rather we need
an analogue of (4.12), namely

1

nh

n
∑

i=1

K

(

F̂ (Xi) − F̂ (x)

h

)

≥ 1 − K(0)

nh
, (4.14)

which is valid at least for most of the x’s. For this, note that for

h ≤ F̂ (x) ≤ 1 − h (4.15)

the right-hand side of (4.13) becomes

0
∫

−∞

K(z)dz +

∞
∫

1/nh

K(z)dz = 1 −
1/nh
∫

0

K(z)dz ≥ 1 − K(0)

nh
,

as desired.

From now on we assume without further mentioning that K is supported by [−1, 1]. In the
following lemma we are going to bound the first integral (4.2) in the expansion of T̂ . This
bound will enable us to show that (4.2) is asymptotically negligible. Recall x = x1+x2

2 .
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Lemma 4.4 Under the assumptions of Theorem 2.1 we have

E

[∫ ∫

W (x)[m̂1(x) − m̂2(x)][F̂ (dx1) − F (dx1)][Ĝ(dx2) − G(dx2)]

]2

= O

(

1

n1n2h2

)

.

(4.16)

Proof. Introduce ϕ1 = Wm̂1 and ϕ2 = Wm̂2. To show (4.16) it suffices to prove

E

[∫ ∫

ϕ(x)[F̂ (dx1) − F (dx1)][Ĝ(dx2) − G(dx2)]

]2

= O

(

1

n1n2h2

)

for ϕ = ϕ1, ϕ2. Now,
∫ ∫

ϕ(x)[F̂ (dx1) − F (dx1)][Ĝ(dx2) − G(dx2)] =

∫ ∫

ϕ∗(x)F̂ (dx1)Ĝ(dx2), (4.17)

where

ϕ∗
(

x1 + x2

2

)

= ϕ

(

x1 + x2

2

)

−
∫

ϕ

(

x1 + v

2

)

G(dv) −
∫

ϕ

(

u + x2

2

)

F (du)

+

∫ ∫

ϕ

(

u + v

2

)

F (du)G(dv).

But

E

[∫ ∫

ϕ∗(x)F̂ (dx1)Ĝ(dx2)

]2

=
1

n2
1n

2
2

n1
∑

i=1

n2
∑

j=1

n1
∑

k=1

n2
∑

l=1

E

[

ϕ∗
(

X1i + X2j

2

)

ϕ∗
(

X1k + X2l

2

)]

=
(n1 − 1)(n2 − 1)

n1n2
E

[

ϕ∗
(

X11 + X21

2

)

ϕ∗
(

X12 + X22

2

)]

(4.18)

+
(n1 − 1)

n1n2
E

[

ϕ∗
(

X11 + X21

2

)

ϕ∗
(

X12 + X21

2

)]

(4.19)

+
(n2 − 1)

n1n2
E

[

ϕ∗
(

X11 + X21

2

)

ϕ∗
(

X11 + X22

2

)]

(4.20)

+
1

n1n2
E

[

ϕ∗
(

X11 + X21

2

)]2

. (4.21)

We now show that (4.18) and (4.20) vanish for ϕ1. We only deal with (4.18) since the
other case is similar. Now, use conditional expectations together with the independence of
(X11, Y11), . . . , (X1n1 , Y1n1), X21 and X22 to get

E

[

ϕ∗
(

X11 + X21

2

)

ϕ∗
(

X12 + X22

2

)]

= E

{

E

[

ϕ∗
(

X11 + X21

2

)

ϕ∗
(

X12 + X22

2

) ∣

∣

∣

∣

X11, Y11, . . . , X1n1 , Y1n1

]}

= E

{

E

[

ϕ∗
(

X11 + X21

2

) ∣

∣

∣

∣

. . .

]

E

[

ϕ∗
(

X12 + X22

2

) ∣

∣

∣

∣

. . .

]}

.
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The first inner conditional expectation equals, however,

E

[

ϕ∗
(

X11 + X21

2

) ∣

∣

∣

∣

. . .

]

=

∫

ϕ

(

X11 + v

2

)

G(dv) −
∫

ϕ

(

X11 + v

2

)

G(dv)

−
∫ ∫

ϕ

(

u + v

2

)

F (du)G(dv) +

∫ ∫

ϕ

(

u + v

2

)

F (du)G(dv) = 0.

This proves that (4.18) vanishes. To bound (4.19) and (4.21), we first consider the expecta-
tions for ¯̄ϕ∗ rather than ϕ∗, where ¯̄ϕ∗ equals ϕ∗, but with (X1i, Y1i), 1 ≤ i ≤ 2, deleted from
the first sample. Since ¯̄ϕ∗ is independent of (Xji, Yji), 1 ≤ i, j ≤ 2, we obtain similarly to
before:

E

[

¯̄ϕ∗
(

X11 + X21

2

)

¯̄ϕ∗
(

X12 + X21

2

)]

= 0.

We now bound (4.21) for ¯̄ϕ∗. For this, write X = 1
2(X11 +X21) for short and note that, after

conditioning, by the Cauchy-Schwarz and the triangle inequality for second moments,

E[ ¯̄ϕ∗(X)]2 ≤ 16E[ ¯̄ϕ(X)]2

= 16

∫ ∫

E

[

¯̄ϕ2

(

u + v

2

)]

F (du)G(dv). (4.22)

To bound the inner expectation note that with n = n1 − 2

E

[

¯̄ϕ2

(

u + v

2

)]

= W 2

(

u + v

2

)

E

[

n
∑

i=1

Y1iW1i

(

u + v

2

)

]2

≤ W 2

(

u + v

2

)

n2
E

[

Y11W11

(

u + v

2

)]2

.

Since

W11

(

u + v

2

)

=

K

(

F̂ (X11)−F̂(u+v
2 )

h

)

∑n
i=1 K

(

F̂ (X1i)−F̂(u+v
2 )

h

)

we obtain from Corollary 4.3 and the boundedness of K that

E[ ¯̄ϕ∗(X)]2 ≤ h−2C

∫ ∫

W 2

(

u + v

2

)

F (du)G(dv)

= O(h−2), (4.23)

where C is a constant which may depend on K.

Now we bound (4.19) and (4.21) in absolute values from above for the original ϕ∗. As to
(4.19), ignoring the X’s for a moment, we have

E[ϕ∗ϕ∗] = E[(ϕ∗ − ¯̄ϕ∗)(ϕ∗ − ¯̄ϕ∗)]

+ E[(ϕ∗ − ¯̄ϕ∗) ¯̄ϕ∗] + E[ ¯̄ϕ∗(ϕ∗ − ¯̄ϕ∗)] + E ¯̄ϕ∗ ¯̄ϕ∗,
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where the last expectation is already known to vanish. As to the others, we may apply the
Cauchy-Schwarz inequality to get

|E[ϕ∗ϕ∗]| ≤ E(ϕ∗ − ¯̄ϕ∗)2 + 2
√

E(ϕ∗ − ¯̄ϕ∗)2O(h−1), (4.24)

by (4.23). For (4.21), use the inequality

(a + b)2 ≤ 2(a2 + b2)

to obtain, by (4.23)

E[ϕ∗]2 ≤ 2
{

E(ϕ∗ − ¯̄ϕ∗)2 + E( ¯̄ϕ∗)2
}

= 2
{

E(ϕ∗ − ¯̄ϕ∗)2 + O(h−2)
}

. (4.25)

Summarizing we see that it suffices to find a proper upper bound for E(ϕ∗ − ¯̄ϕ∗)2. As we
shall see we have

E(ϕ∗ − ¯̄ϕ∗)2 = O((nh)−2). (4.26)

This in turn yields the bound O(n−1h−2) for (4.24) and O(h−2) for (4.25) and completes the
proof of the lemma.

Now, to get (4.26), note that ϕ∗ − ¯̄ϕ∗ = (ϕ − ¯̄ϕ)∗. Apply the first inequality in (4.22) to
obtain

E(ϕ∗ − ¯̄ϕ∗)2 ≤ 16E(ϕ − ¯̄ϕ)2.

To bound the last expectation we again only deal with the first sample and put n = n1. In
this case

ϕ(x) − ¯̄ϕ(x) = W (x)

[

n
∑

i=1

W1i(x)Y1i −
n
∑

i=3

Wn−2,1,i(x)Y1i

]

= W (x)[W11(x)Y11 + W12(x)Y12] (4.27)

+ W (x)

[

n
∑

i=3

Y11(W1i(x) − Wn−2,1,i(x))

]

. (4.28)

Here Wn−2,1,i denotes W1i with the first two data deleted from the sample. Since by assump-
tion W (X)Y has a finite second moment and K is bounded from above, the lower bound in
Corollary 4.3 yields that the second moment of (4.27) is of the order O((nh)−2). To bound
the second moment of (4.28), write

W1i =
ai

b
and Wn−2,1,i =

ci

d

so that

W1i − Wn−2,1,i =
ai − ci

b
+

ci

bd
(d − b).

But

ai − ci = K

(

F̂n(X1i) − F̂n(x)

h

)

− K

(

F̂n−2(X1i) − F̂n−2(x)

h

)

= K ′(∆i)
F̂n(X1i) − F̂n(x) − F̂n−2(X1i) + F̂n−2(x)

h
,
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where ∆i is an appropriate value between the two ratios, and the last ratio is uniformly
bounded in absolute values by 4/nh. We may now again apply the lower bound in Corollary
4.3 to obtain, for some finite constant C,

E

[

W (X)
n
∑

i=3

Y1i
ai − ci

b

]2

≤ Cn−4h−4
E

[

|W (X)|
n
∑

i=3

|Y1i||K ′(∆i)|
]2

. (4.29)

From Lemma 4.5 to follow, with p = 2, the last expectation is O(n2h2), so that

(4.29) = O(n−2h−2),

as desired. Finally, we study

E

[

W (X)
n
∑

i=3

Y1i
ci(d − b)

bd

]2

= E

[

W (X)
d − b

b

n
∑

i=3

Y1iWn−2,1,i(X)

]2

≤ E

[

|W (X)| |d − b|
b

n
∑

i=3

|Y1i|Wn−2,1,i(X)

]2

. (4.30)

To bound b in the denominator, we apply the lower bound from Corollary 4.3. For d − b we
have

b − d =
n
∑

i=1

ai −
n
∑

i=3

ci = a1 + a2 +
n
∑

i=3

(ai − ci).

The boundedness of a1 and a2 follows from the boundedness of K. For the remaining sum
we have as above

∣

∣

∣

∣

∣

n
∑

i=3

(ai − ci)

∣

∣

∣

∣

∣

=
n
∑

i=3

|K ′(∆i)| · O(1/nh).

Apply Lemma 4.5 with p = 1 and Y1i ≡ 1 to show that the last expression is bounded.
Finally, from Stone (1977)

n
∑

i=3

|Y1i|Wn−2,1,i(X) → E[|Y1||X] in L2.

Conclude that (4.30) is of the order O((nh)−2). This completes the proof of the lemma. �

Lemma 4.5 Under the assumptions of Theorem 2.1 we have for p = 1, 2:

E

[

|W (X)|
n
∑

i=3

|Y1i||K ′(∆i)|
]p

= O((nh)p).

Proof. We only deal with p = 2. Omitting the sample index 1, the expectation becomes

(n − 2)E
[

W 2(X)Y 2
3 (K ′(∆3))

2
]

(4.31)

+ (n − 2)(n − 3)E
[

W 2(X)|Y3||Y4||K ′(∆3)||K ′(∆4)|
]

(4.32)
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To bound (4.31) recall that K and therefore also K ′ is w.l.o.g. supported by [−1, 1]. Since
|K ′| ≤ c < ∞, we therefore have

|K ′(∆3)| ≤ c1{|∆3|≤1}.

Furthermore, when 4/nh < 2, we have

1{|∆3|≤1} ≤ 1
{
∣

∣

∣

∣

F̂n(X3)−F̂n(X)
h

∣

∣

∣

∣

≤1}
+ 1

{
∣

∣

∣

∣

F̂n−2(X3)−F̂n−2(X)

h

∣

∣

∣

∣

≤1}
. (4.33)

Conclude that the expectation in (4.31) is less than or equal to

c2
E

[

W 2(X)Y 2
3 1

{| F̂n(X3)−F̂n(X)
h

|≤1}

]

+ c2
E

[

W 2(X)Y 2
3 1

{| F̂n−2(X3)−F̂n−2(X)

h
|≤1}

]

.

We only deal with the first expectation, the other being the same for sample size n − 2.
By the DKW-inequality for empirical processes, see Dvoretzky, Kiefer and Wolfowitz (1956),
we obtain for some constant C

P

(

n1/2 sup
x

|F̂n(x) − F (x)| ≥ d

)

≤ C exp[−2d2] (4.34)

for all d > 0. Similarly for sample size n − 2. Put d = L
√

ln n for some positive constant L
to be chosen later. Then (4.34) implies

P

(

n1/2 sup
x

|F̂n(x) − F (x)| ≥ d

)

≤ Cn−2L2
.

On the set {n1/2 supx |F̂n(x) − F (x)| < d}, the inequality

|F̂n(X3) − F̂n(X)| ≤ h implies the inequality |F (X3) − F (X)| ≤ h +
2d√
n

.

Since by assumption nh2

ln n → ∞, we have, at least for all large n, that h + 2d√
n

≤ 2h. We

therefore obtain

E

[

W 2(X)Y 2
3 1{∣

∣

∣

∣

F̂n(X3)−F̂n(X)
h

∣

∣

∣

∣

≤1

}

]

= E

[

W 2(X)Y 2
3 1{...≤1,n1/2 supx |F̂n(x)−F (x)|≥d}

]

+E

[

W 2(X)Y 2
3 1{...≤1,n1/2 supx |F̂n(x)−F (x)|<d}

]

≤ E

[

W 2(X)Y 2
3 1{n1/2 supx |F̂n(x)−F (x)|≥d}

]

(4.35)

+E
[

W 2(X)Y 2
3 1{|F (X3)−F (X)|≤2h}

]

. (4.36)

To bound (4.36), recall that X only depends on the first variables from the two samples
and is therefore independent of (X3, Y3). Putting σ2(x) = E[Y 2

3 |X3 = x], we may therefore
condition on X to get that (4.36) equals

E
[

W 2(X)E
[

Y 2
3 1{|F (X3)−F (X)|≤2h}|X

]]

= E



W 2(X)

1
∫

0

σ2(F−1(u))1{|u−F (X)|≤2h}du



 .
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From differentiation theory this expectation, however, is asymptotically proportional to
4hE[W 2(X)σ2(X)] = O(h).

Next we bound (4.35). By the DKW-inequality, (4.35) is less than or equal to, for d = L
√

ln n
and any L > 0:

√

E[W 4(X)Y 4
3 ]

√

P(n1/2 sup
x

|F̂n(x) − F (x)| ≥ d) = O(n−L2
).

For L = 1, the last term is O(h). Altogether we have shown that (4.31) is of the order O(nh)
and therefore also O(n2h2). We now come to (4.32). Similar to before, we get

E
[

W 2(X)|Y3||Y4||K ′(∆3)||K ′(∆4)|
]

≤ c2
E
[

W 2(X)|Y3||Y4|1{|∆3|≤1,|∆4|≤1}
]

.

From (4.33) we see that the last expectation may be bounded from above by

E

[

W 2(X)|Y3||Y4|1{|F̂n(X3)−F̂n(X)|≤h,|F̂n(X4)−F̂n(X)|≤h}

]

+ E

[

W 2(X)|Y3||Y4|1{|F̂n−2(X3)−F̂n−2(X)|≤h,|F̂n−2(X4)−F̂n−2(X)|≤h}

]

+ E

[

W 2(X)|Y3||Y4|1{|F̂n(X3)−F̂n(X)|≤h,|F̂n−2(X4)−F̂n−2(X)|≤h}

]

+ E

[

W 2(X)|Y3||Y4|1{|F̂n−2(X3)−F̂n−2(X)|≤h,|F̂n(X4)−F̂n(X)|≤h}

]

.

We only deal with the first expectation, the others being similar. Using an argument based
on the DKW-inequality, the first expectation is less than or equal to

E
[

W 2(X)|Y3||Y4|1{|F (X3)−F (X)|≤2h,|F (X4)−F (X)|≤2h}
]

(4.37)

+ E

[

W 2(X)|Y3||Y4|1{n1/2 supx |F̂n(x)−F (x)|≥d}

]

.

The last expectation is, as before, of the order O(n−L2
), which for L = 1 is O(h2). As to

(4.37), condition on X and then use the independence of (X3, Y3) and (X4, Y4) together with
a differentiation argument to show that (4.37) is of the order O(h2).

This concludes the proof of Lemma 4.5. �

Note that with Lemma 4.5 we also completed the proof of Lemma 4.4. We now bound each
of the integrals (4.3)-(4.6). Since the analysis of (4.4) and (4.5) will be similar, it suffices to
consider (4.5), say.

Lemma 4.6 Under the assumptions of Theorem 2.1, we have, with n = n1,

E

[∫ ∫

W (x)[m̂1(x) − m1(x)][F̂ (dx1) − F (dx1)]G(dx2)

]2

= o(n−1).
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Proof. Again, we shall omit the index 1 for the sample. By the Cauchy-Schwarz inequality
the expectation is less than or equal to

E

[

∫ [∫

W (x)[m̂1(x) − m1(x)][F̂ (dx1) − F (dx1)]

]2

G(dx2)

]

=

∫

E

[∫

W (x)[m̂1(x) − m1(x)][F̂ (dx1) − F (dx1)]

]2

G(dx2). (4.38)

Set, for each x2 ∈ R,
ϕ̂1(x1) = W (x)[m̂1(x) − m1(x)],

where as before x = x1+x2
2 . Then the inner expectation in (4.38) becomes

E

[

n−1
n
∑

i=1

ϕ̂1(Xi) −
∫

ϕ̂1(x1)F (dx1)

]2

= n−2
n
∑

i=1

n
∑

j=1

E

{

(ϕ̂1(Xi) −
∫

ϕ̂1dF )(ϕ̂1(Xj) −
∫

ϕ̂1dF )

}

= n−1
E

{

(ϕ̂1(X1) −
∫

ϕ̂1dF )2
}

(4.39)

+
n − 1

n
E

{

(ϕ̂1(X1) −
∫

ϕ̂1dF )(ϕ̂1(X2) −
∫

ϕ̂1dF )

}

. (4.40)

To bound (4.39) from above, we first consider the expectation for ϕ̄1, where ϕ̄1 equals ϕ̂1 but
with (X1, Y1) deleted from the first sample. But

n−1
E

{

(ϕ̄1(X1) −
∫

ϕ̄1dF )2
}

= n−1
E
{

E[(. . .)2|Xi, Yi, 2 ≤ i ≤ n]
}

≤ n−1
E
{

E[ϕ̄2
1(X1)|Xi, Yi, 2 ≤ i ≤ n]

}

= n−1
E

{∫

ϕ̄2
1(x1)F (dx1)

}

. (4.41)

We now discuss (4.40), first for the case when the first two data have been deleted from the
sample. Denote with ¯̄ϕ1 the corresponding ϕ̂1. But then

E

{

( ¯̄ϕ1(X1) −
∫

¯̄ϕ1dF )( ¯̄ϕ1(X2) −
∫

¯̄ϕ1dF )

}

= E [E {(. . .)(. . .)|Xi, Yi, 3 ≤ i ≤ n}] .

By independence of X1 and X2, the inner conditional expectation factorizes and therefore
vanishes. For the original ϕ̂1, we write

ϕ̂1 −
∫

ϕ̂1dF = ϕ̄1 −
∫

ϕ̄1dF + ϕ̂1 − ϕ̄1 +

∫

ϕ̄1dF −
∫

ϕ̂1dF.

Using the inequality (a + b)2 ≤ 2(a2 + b2) we therefore get

n−1
E

{

(ϕ̂1 −
∫

ϕ̂1dF )2
}

≤ 2n−1
E

{

(ϕ̄1 −
∫

ϕ̄1dF )2
}

+ 2n−1
E

{

(ϕ̂1 − ϕ̄1 +

∫

ϕ̄1dF −
∫

ϕ̂1dF )2
}

≤ 2n−1
E

{

(ϕ̄1 −
∫

ϕ̄1dF )2
}

+ 4n−1
E{(ϕ̂1 − ϕ̄1)

2} + 4n−1

∫

E
[

(ϕ̄1 − ϕ̂1)
2
]

dF, (4.42)
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where for the last inequality we used the Cauchy-Schwarz inequality and Fubini’s Theorem.
Up to the factor 2, the first term is bounded from above by (4.41). It follows from Stone
(1977) that

E

∫ ∫

ϕ̄2
1(x)F (dx1)G(dx2) → 0 as n → ∞. (4.43)

By the same technique leading to (4.26) we obtain for the other two expectations in (4.42):
∫

E
[

(ϕ̂1 − ϕ̄1)
2
]

G(dx2) = O

(

1

n2h2

)

= o(1)

and
∫ ∫

E
[

(ϕ̄1 − ϕ̂1)
2
]

dFdG =O

(

1

n2h2

)

= o(1).

Together with (4.43) we therefore obtain that

n−1

∫

E

[

ϕ̂1(X1) −
∫

ϕ̂1dF

]2

dG = o(n−1).

We now analyze (4.40) for the original ϕ̂1. Proceeding as before (4.24), we have

E

[

(ϕ̂1 −
∫

ϕ̂1dF )(ϕ̂1 −
∫

ϕ̂1dF )

]

= E

[

(ϕ̂1 −
∫

ϕ̂1dF − ¯̄ϕ1 +

∫

¯̄ϕ1dF )(ϕ̂1 −
∫

ϕ̂1dF − ¯̄ϕ1 +

∫

¯̄ϕ1dF )

]

+ E

[

(ϕ̂1 −
∫

ϕ̂1dF − ¯̄ϕ1 +

∫

¯̄ϕ1dF )( ¯̄ϕ1 −
∫

¯̄ϕ1dF )

]

+ E

[

( ¯̄ϕ1 −
∫

¯̄ϕ1dF )(ϕ̂1 −
∫

ϕ̂1dF − ¯̄ϕ1 +

∫

¯̄ϕ1dF )

]

.

Each of the three expectations may be bounded from above by using Cauchy-Schwarz. For
the first term we obtain the order (nh)−2. For the other two we get the upper bound

O[(nh)−1]

√

E( ¯̄ϕ1 −
∫

¯̄ϕ1dF )2 ≤ O[(nh)−1]

[∫

E ¯̄ϕ2
1(x1)F (dx1)

]1/2

.

To prove the lemma it suffices to show that
∫ [∫

E ¯̄ϕ2
1(x1)F (dx1)

]1/2

G(dx2) = o(h).

By Cauchy-Schwarz this will follow from
√

E

∫ ∫

¯̄ϕ2
1(x1)F (dx1)G(dx2) = o(h)

or, in other words,

E

[∫ ∫

¯̄ϕ2
1(x1)F (dx1)G(dx2)

]

= o(h2). (4.44)

This, however, will follow from the next lemma. �
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Lemma 4.7 Under the assumptions of Theorem 2.1, we have (4.44).

Proof. We show (4.44) for sample size n rather than n − 2, i.e., for ϕ̂1. Obviously, with
x = x1+x2

2 , we have because of
∑

W1i = 1:

ϕ̂1(x) = W (x)[m̂1(x) − m1(x)] = W (x)

n
∑

i=1

W1i(x)[Yi − m1(Xi)]

+ W (x)
n
∑

i=1

W1i(x)[m1(Xi) − m1(x)].

Conclude that (4.44) equals

∫

W 2(x)E

[

n
∑

i=1

W1i(x) [Yi − m1(Xi)]

]2

H(dx) (4.45)

+

∫

W 2(x)E

[

n
∑

i=1

W1i(x) [m1(Xi) − m1(x)]

]2

H(dx), (4.46)

upon noticing that the two terms in the brackets are uncorrelated. In (4.45), the summands
are also uncorrelated so that (4.45) becomes

∫

W 2(x)E

[

n
∑

i=1

W 2
1i(x)σ2(Xi)

]

H(dx), (4.47)

where σ2(x) = Var(Y1|X1 = x). Now, recall Corollary 4.3. Together with the boundedness
of K we therefore have that (4.47) is of the order

O

(

1

nh

)∫

W 2(x)E

[

n
∑

i=1

W1i(x)σ2(Xi)

]

H(dx).

By Stone (1977), the integral converges to
∫

W 2(x)σ2(x)H(dx). Hence (4.45) is of the order
O(1/nh). By assumption (h), this term is, however, of the order o(h2).

As to (4.46), the integral becomes

∫

W 2(x)E

[

n
∑

i=1

W 2
1i(x)[m1(Xi) − m1(x)]2

]

H(dx) (4.48)

+

∫

W 2(x)E

[

n
∑

i=1

n
∑

j=1
i6=j

W1i(x)W1j(x)[m1(Xi) − m1(x)] (4.49)

× [m1(Xj) − m1(x)]

]

H(dx).
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The expression in (4.48) is bounded from above, again by Corollary 4.3, by

O

(

1

nh2

)∫

W 2(x)E

{

K2

(

F̂ (X1) − F̂ (x)

h

)

[m1(X1) − m1(x)]2

}

H(dx).

Now use the boundedness of K, the property K ≤ C1[−1,1] and the DKW-inequality to get
that the last integral is, similar to the proof of Lemma 4.5, less than or equal to

C2

∫

W 2(x)E
{

1{|F̂ (X1)−F̂ (x)|≤h}[m1(X1) − m1(x)]2
}

H(dx)

≤ C2

∫

W 2(x)E
{

1{|F (X1)−F (x)|≤2h}[m1(X1) − m1(x)]2
}

H(dx)

+ O(n−L2
), for any L ≥ 1.

The integral equals

∫

W 2(x)

1
∫

0

1{|u−F (x)|≤2h}[m1(F
−1(u)) − m1(x)]2duH(dx) = O(h3).

Hence (4.48) is of the order O(hn−1) = o(h2). It remains to bound (4.49). The integral
equals

n(n − 1)E

[∫

W 2(x)W11(x)W12(x)[m1(X1) − m1(x)][m1(X2) − m1(x)]H(dx)

]

.

The H-integral equals

1
∫

0

W 2(F−1(u))
h(F−1(u))

f(F−1(u))
W11(F

−1(u))W12(F
−1(u))[m1(F

−1(U1)) − m1(F
−1(u))]

×[m1(F
−1(U2)) − m1(F

−1(u))]du.

Note also that, e.g., W11(F
−1(u)) equals

K
(

F̄n(U1)−F̄n(u)
h

)

∑n
j=1 K

(

F̄n(Uj)−F̄n(u)

h

) . Here F̄n is the empirical d.f.

of the uniform sample Ui = F (Xi), 1 ≤ i ≤ n. Furthermore,

m1(F
−1(U1)) − m1(F

−1(u)) = (U1 − u)(m1 ◦ F−1)′(u)

+
1

2
(U1 − u)2(m1 ◦ F−1)′′(∆1)

for some ∆1 between U1 and u. Similarly, for U2. Multiplication leads to four integrals of
which the first equals

n(n−1)

1
∫

0

W 2(F−1(u))
h(F−1(u))

f(F−1(u))
W11(F

−1(u))W12(F
−1(u))(U1−u)(U2−u)[(m1◦F−1)′(u)]2du.

(4.50)
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We first consider the integral where in the numerator of W11 and W12 we have K
(

U1−u
h

)

and K
(

U2−u
h

)

, respectively. Since the denominators of these W ’s behave like nh for each
0 < u < 1, according to Corollary 4.2, it suffices to show that

E

[ 1
∫

0

W 2(F−1(u))
h(F−1(u))

f(F−1(u))
[(m1 ◦ F−1)′(u)]2

× K

(

U1 − u

h

)(

U1 − u

h

)

K

(

U2 − u

h

)(

U2 − u

h

)

du

]

= o(h2). (4.51)

Setting

A(u) = W 2(F−1(u))
h(F−1(u))

f(F−1(u))
[(m1 ◦ F−1)′(u)]2,

the expectation in (4.51) equals, by independence of U1 and U2,

1
∫

0

A(u)E2

[

K

(

U1 − u

h

)

U1 − u

h

]

du

=

1
∫

0

A(u)





1
∫

0

K

(

v − u

h

)

v − u

h
dv





2

du =

1
∫

0

A(u)






h

1−u
h
∫

−u
h

K(w)wdw







2

du.

Since, for 0 < u < 1, the inner integral tends to

∞
∫

−∞

K(w)wdw = 0,

this shows (4.51).

Next we study

h−2

1
∫

0

A(u)(U1 − u)(U2 − u)

[

K

(

F̄n(U1) − F̄n(u)

h

)

− K

(

U1 − u

h

)]

K

(

U2 − u

h

)

du.

By the Mean Value Theorem this expression equals

h−2

1
∫

0

A(u)(U1 − u)(U2 − u)K ′(∆1)
F̄n(U1) − F̄n(u) − U1 + u

h
K

(

U2 − u

h

)

du (4.52)

for some ∆1 between the corresponding ratios. Note that the original integral in (4.50) only
extends over all u’s satisfying |F̄n(U1) − F̄n(u)| ≤ h. By the DKW-inequality and since√

n−1 ln n = o(h) this implies, as in the proof of Lemma 4.5, that with large probability we
also have |U1 − u| ≤ 2h. Now write

F̄n(U1) − F̄n(u) − U1 + u = n−1/2[ᾱn(U1) − ᾱn(u)],
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where ᾱn denotes the uniform empirical process based on U1, . . . , Un. With large probability
this term is in absolute values less than or equal to n−1/2w̄n(2h), with w̄n denoting the
oscillation modulus of the uniform empirical process. From Theorem 2.14 in Stute (1982)
this modulus is of the order OP(

√
h ln h−1). Since K is supported by [-1,1], we also need to

integrate only over |U2 − u| ≤ h. Consequently, on the set of relevant u’s, |U1 − u|/h and
|U2 − u|/h are bounded. Hence the integral in (4.52) is bounded from above by

C

√
ln h−1

√
nh

1
∫

0

A(u)K

(

U2 − u

h

)

du,

where C is a proper constant. The expectation of the last integral is, however, of the order
h, so that finally the expectation of (4.52) is of the order

O
(√

hn−1 ln h−1
)

= o(h2),

by (h). The same arguments apply to the error term

h−2

1
∫

0

A(u)(U1 − u)(U2 − u)K

(

U1 − u

h

)[

K

(

F̄n(U2) − F̄n(u)

h

)

− K

(

U2 − u

h

)]

du.

It remains to bound

h−2

1
∫

0

A(u)(U1 − u)(U2 − u)

[

K

(

F̄n(U1) − F̄n(u)

h

)

− K

(

U1 − u

h

)]

×
[

K

(

F̄n(U2) − F̄n(u)

h

)

− K

(

U2 − u

h

)]

du.

By the same arguments as before each term in [. . .] is of the order
√

h−1n−1 ln h−1, so that
overall the integral is uniformly in U1 and U2 bounded by O(h−1n−1 ln h−1) = o(h2). Sum-
marizing we see that the expectation of (4.50) is o(h2).

Next we analyze

n(n − 1)

1
∫

0

W 2(F−1(u))
h(F−1(u))

f(F−1(u))
W11(F

−1(u))W12(F
−1(u))(U1 − u)(m1 ◦ F−1)′(u)

× 1

2
(U2 − u)2(m1 ◦ F−1)′′(∆2)du.

This term is bounded from above by

Ch

1
∫

0

W 2(F−1(u))
h(F−1(u))

f(F−1(u))
|(m1 ◦ F−1)′(u)|K

(

F̄n(U1) − F̄n(u)

h

)

× |(m1 ◦ F−1)′′(∆2)|K
(

F̄n(U2) − F̄n(u)

h

)

du.
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As before it suffices to study the integral with K
(

U1−u
h

)

and K
(

U2−u
h

)

. Then the expectation
is of the order O(h3) = o(h2). Finally, the expectation of

1

4
n(n − 1)

1
∫

0

W 2(F−1(u))
h(F−1(u))

f(F−1(u))
W11(F

−1(u))W12(F
−1(u))(U1 − u)2(U2 − u)2

× (m1 ◦ F−1)′′(∆1)(m1 ◦ F−1)′′(∆2)du

is of the order O(h4) = o(h2). This completes the proof of Lemma 4.7. �

At the same time we also completed the proof of Lemma 4.6.

Next we bound (4.3) and (4.6). Since they are of similar structure, we restrict ourselves to
(4.3).

Lemma 4.8 Under the assumptions of Theorem 2.1, we have, with n = n1,

E

[∫ ∫

W (x)[m̂1(x) − m1(x)]F (dx1)[Ĝ(dx2) − G(dx2)]

]2

= o(n−1).

Proof. Put, for each x2,

ϕ(x2) =

∫

W (x)[m̂1(x) − m1(x)]F (dx1).

This function is random but only depends on the first sample. Hence, by independence of
the two samples, we have

E

[∫

ϕ(x2)[Ĝ(dx2) − G(dx2)]

]2

= E

{

E

[

(∫

ϕ(dĜ − dG)

)2

| first sample

]}

= E

{

1

n2

(

∫

ϕ2dG −
(∫

ϕdG

)2
)}

≤ 1

n2
E

[∫

ϕ2dG

]

.

Now, since n1 and n2 are of the same order, it suffices to show that E
∫

ϕ2dG → 0. This,
however, follows from the Cauchy-Schwarz inequality and Stone (1977). �

Summarizing we see, that (4.2)-(4.6) are negligible.

To take care of (4.7) we need the following lemma.

Lemma 4.9 Under the assumptions of Theorem 2.1 we have (with n = n1)

√
n

∫

W (x)[m̂1(x) − m1(x)]H(dx)

= n1/2
n1
∑

i=1

(Yi − m1(Xi))

∫

W (x)W1i(x)H(dx) + oP(1). (4.53)
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Proof. The expression (4.7) equals, because of
∑

W1i(x) = 1,

∫

W (x)[m̂1(x) − m1(x)]H(dx) =

∫

W (x)

[

n
∑

i=1

(Yi − m1(x))W1i(x)

]

H(dx)

=

∫

W (x)

[

n
∑

i=1

(Yi − m1(Xi))W1i(x)

]

H(dx) (4.54)

+

∫

W (x)

[

n
∑

i=1

(m1(Xi) − m1(x))W1i(x)

]

H(dx). (4.55)

The expression in (4.54) equals

n
∑

i=1

(Yi − m1(Xi))

∫

W (x)W1i(x)H(dx),

while (4.55) may be written as

∫

W (x)

[

n
∑

i=1

(m1(Xi) − m1(x))

]

W1i(x)H(dx)

=
n
∑

i=1

∫

W (x) [m1(Xi) − m1(x)] W1i(x)H(dx). (4.56)

We first study an expression corresponding to (4.56), but with the weights W1i(x) replaced
with

W̄1i(x) =
K
(

F (Xi)−F (x)
h

)

nh
.

This results in
n
∑

i=1

∫

W (x) [m1(Xi) − m1(x)] W̄1i(x)H(dx), (4.57)

a sum of independent identically distributed random variables each of which has expectation

1

nh

∫ ∫

W (x)[m1(y) − m1(x)]K

(

F (y) − F (x)

h

)

H(dx)F (dy).

We now show that

n1/2
n
∑

i=1

[ ∫

W (x)[m1(Xi) − m1(x)]W̄1i(x)H(dx)

− 1

nh

∫ ∫

W (x)[m1(y) − m1(x)] · K
(

F (y) − F (x)

h

)

H(dx)F (dy)

]

−→ 0 in probability.
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Actually, by Bienaymé, the variance of the sum is less than or equal to

n2

∫





∫

W (x)[m1(y) − m1(x)]
K
(

F (y)−F (x)
h

)

nh
H(dx)





2

F (dy)

= h−2

∫ [∫

W (x)[m1(y) − m1(x)]K

(

F (y) − F (x)

h

)

h(x)

f(x)
F (dx)

]2

F (dy)

=

∫

[

F (y)
h
∫

F (y)−1
h

W (F−1(F (y) − wh))[m1 ◦ F−1(F (y)) − m1 ◦ F−1(F (y) − wh)]

× K(w)
h ◦ F−1(. . .)

f ◦ F−1(. . .)
dw

]2

F (dy).

The last term, however, tends to zero as h → 0.

Next, we study the expectation of (4.57) after multiplication with n1/2, namely

n3/2

nh

∫ ∫

W (x)[m1(y) − m1(x)]K

(

F (y) − F (x)

h

)

H(dx)F (dy)

=
n1/2

h

∫

W (x)

∫ 1

0
[m1(F

−1(u)) − m1(x)]K(
u − F (x)

h
)duH(dx)

= n1/2

∫

W (x)

...
∫

...

[

[m1(F
−1)]′(F (x))wh +

1

2
[m1(F

−1)]′′(∆1)w
2h2

]

K(w)dwH(dx).

Since
∫

wK(w)dw = 0, the last term is of the order O(n1/2h2). Since nh4 → 0, we see that
the expectation of (4.57) (multiplied with n1/2) also tends to zero, so that in summary,

n1/2
n
∑

i=1

∫

W (x)[m1(Xi) − m1(x)]W̄1i(x)H(dx) → 0 in probability.

So, to prove Lemma 4.9, it remains to show that

n1/2
n
∑

i=1

∫

W (x)[m1(Xi) − m1(x)][W1i(x) − W̄1i(x)]H(dx) → 0 in probability.

For this, we write

W1i(x) − W̄1i(x) =
K
(

F̂ (Xi)−F̂ (x)
h

)

− K
(

F (Xi)−F (x)
h

)

∑n
j=1 K

(

F̂ (Xj)−F̂ (x)
h

)

+
K
(

F (Xi)−F (x)
h

)(

nh −∑n
j=1 K

(

F̂ (Xj)−F̂ (x)
h

))

nh
∑n

j=1 K
(

F̂ (Xj)−F̂ (x)
h

)
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In the first step we show

n1/2
n
∑

i=1

∫

W (x)[m1(Xi) − m1(x)]
K
(

F̂ (Xi)−F̂ (x)
h

)

− K
(

F (Xi)−F (x)
h

)

∑n
j=1 K

(

F̂ (Xj)−F̂ (x)
h

) H(dx)

−→ 0 in probability.

Since the support of K is contained in [−1, 1], the above term in absolute values is bound
from above, in view of Corollary 4.3, by

C

nh2

n
∑

i=1

∫

{x:|F̂ (Xi)−F̂ (x)|≤h}
or {x:|F (Xi)−F (x)|≤h}

|W (x)||m1(Xi) − m1(x)||K ′(∆i)||ᾱn(F (Xi)) − ᾱn(F (x))|H(dx)

As before, using the DKW-bound and the fact that n−1/2 � h, we have that with large
probability each set {x : |F̂ (Xi) − F̂ (x)| ≤ h} is included in {x : |F (Xi) − F (x)| ≤ 2h}. On
this set, the ᾱn increment is of the order O(

√
h ln h−1), with probability one. Therefore, the

above sum is with probability one bounded from above by

C‖K ′‖
√

h ln h−1

nh2

n
∑

i=1

∫

x:|F (Xi)−F (x)|≤2h

|W (x)||m1(Xi) − m1(x)|H(dx). (4.58)

Each of the above integrals is of the order O(h2). More precisely,

1

h2

∫

x:|F (Xi)−F (x)|≤2h

|W (x)||m1(Xi) − m1(x)|H(dx)

=
1

h2

Ui+2h
∫

Ui−2h

|W (F−1(u))||m1(F
−1(Ui)) − m1(F

−1(u))|h(F−1(u))

f(F−1(u))
du

≤ 2

h

Ui+2h
∫

Ui−2h

|W (F−1(u))||(m1 ◦ F−1)′(∆i)|
h(F−1(u))

f(F−1(u))
du

∼ 8|W (F−1(Ui))||(m1 ◦ F−1)′(Ui)|
h(F−1(Ui))

f(F−1(Ui))
.

Hence (4.58) is bounded from above, up to constants, by

√
h ln h−1

n

n
∑

i=1

|W (F−1(Ui))||(m1 ◦ F−1)′(Ui)|
h(F−1(Ui))

f(F−1(Ui))
.

By the SLLN, the sample mean converges so that the last sum is of the order OP(
√

h ln h−1) =
oP(1), as desired.
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Next, we bound

n1/2
n
∑

i=1

∫

W (x)[m1(Xi)−m1(x)]
K
(

F (Xi)−F (x)
h

)

∑n
j=1 K

(

F̂ (Xj)−F̂ (x)
h

)



1 − 1

nh

n
∑

j=1

K

(

F̂ (Xj) − F̂ (x)

h

)



H(dx).

(4.59)
Apply (4.12) and (4.14) to show that for h ≤ F̂ (x) ≤ 1 − h, the term

1 − 1

nh

n
∑

j=1

K

(

F̂ (Xj) − F̂ (x)

h

)

= 1 − 1

nh

n
∑

j=1

K

(

j
n − F̂ (x)

h

)

is in absolute values of the order O(1/nh). Hence, if in (4.59) we restrict integration to the
set {x : h ≤ F̂ (x) ≤ 1 − h}, we obtain that this part of (4.59) is bounded from above in
absolute values by

n1/2

(nh)2

n
∑

i=1

∫

|W (x)||m1(Xi) − m1(x)|K
(

F (Xi) − F (x)

h

)

H(dx).

Similar to before, it may be shown that the sum is of the order OP(nh2) so that finally the
above term is of the order OP(n−1/2) = oP(1). To bound, e.g., the integral (4.59) over the set
{x : F̂ (x) < h}, we use (4.12) and Corollary 4.3 to get that

n1/2

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

∫

{x:F̂ (x)<h}

[. . .]H(dx)

∣

∣

∣

∣

∣

∣

∣

= OP

(

1

hn1/2

) n
∑

i=1

∫

{x:F̂ (x)<h}

|W (x)||m1(Xi) − m1(x)|K
(

F (Xi) − F (x)

h

)

H(dx). (4.60)

By DKW, the set {x : F̂ (x) < h} is eventually contained in the set {x : F (x) < 2h}. Then use
Taylor’s expansion and substitution to show as usual that (4.60) is of the order OP(h2n1/2).
In view of h4n → 0, this, however, is oP(1). This completes the proof of the lemma. �

With the same arguments we obtain the following lemma.

Lemma 4.10 Under the assumptions of Theorem 2.1, we have (with n = n2)

√
n

∫

W (x)[m̂2(x) − m2(x)]H(dx) =
√

n

n2
∑

i=1

(Y2i − m2(X2i))

∫

W (x)W2i(x)H(dx) + oP(1).

We are now in a position to give the

Proof of Theorem 2.1. From Lemma 4.4 – Lemma 4.8 we have, under H0,
√

n1n2

n1 + n2
T̂ =

√

n1n2

n1 + n2

∫ ∫

W (x)[m̂1(x) − m1(x)]F (dx1)G(dx2)

−
√

n1n2

n1 + n2

∫ ∫

W (x)[m̂2(x) − m2(x)]F (dx1)G(dx2) + oP(1),
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while Lemmas 4.9 and 4.10 provide the martingale representations of the two integrals. Fi-
nally, apply (N).

Under local alternatives we have
m2 = m1 +

cs√
N

.

In the expansion (4.2) – (4.11), also the last three terms become relevant now. The terms
(4.2) – (4.6) are negligible also in this case, while (4.7) and (4.8) are the same as before. The
terms (4.9) and (4.10) are also negligible under the alternative. For example,

√
N

∫ ∫

W (x)[m1(x) − m2(x)][F̂ (dx1) − F (dx1)]G(dx2)

= −c

∫ ∫

W (x)s(x)[F̂ (dx1) − F (dx1)]G(dx2) → 0

by the SLLN. We finally come to (4.11). But

√
N

∫ ∫

W (x)[m1(x) − m2(x)]F (dx1)G(dx2) = −c

∫

W (x)s(x)H(dx) = µ,

which is the desired noncentrality parameter. �

Proof of Theorem 2.2. According to Theorem 2.1 it remains to study the distributional
behavior of

n
1/2
1

n1
∑

i=1

(Y1i − m1(X1i))

∫

W (x)W1i(x)H(dx)

and

n
1/2
2

n2
∑

i=1

(Y2i − m2(X2i))

∫

W (x)W2i(x)H(dx).

By independence of the first and second sample it is sufficient to study each sum separately.
For the first, say, put

Fni = σ(Y1j , 1 ≤ j ≤ i, X1j , 1 ≤ j ≤ n), n = n1.

Since
∫

W (x)W1i(x)H(dx) is measurable w.r.t. Fn,i−1 and Y1i − m1(X1i) is conditionally
centered, the summands

ξni = n1/2(Y1i − m1(X1i))

∫

W (x)W1i(x)H(dx)

form a martingale difference array. Brown’s (1971) CLT for martingale difference arrays
guarantees distributional convergence to N (0, ρ2

1), where in our case

ρ2
1 = lim

n→∞
n

n
∑

i=1

σ2
1(X1i)

[∫

W (x)W1i(x)H(dx)

]2

. (4.61)

39



Each of the integrals is asymptotically equal to

∫

W (x)
K
(

F (X1i)−F (x)
h

)

nh

h(x)

f(x)
F (dx)

=
1

nh

1
∫

0

W (F−1(u))K

(

F (X1i) − u

h

)

h(F−1(u))

f(F−1(u))
du

=
1

n

F (X1i)/h
∫

(F (X1i)−1)/h

W (F−1(F (X1i) − wh))K(w)
h(F−1(F (X1i) − wh))

f(F−1(F (X1i) − wh))
dw

∼ 1

n

∞
∫

−∞

W (X1i)K(w)
h(X1i)

f(X1i)
dw =

1

n
W (X1i)

h(X1i)

f(X1i)
.

Hence the limit in (4.61) equals

lim
n→∞

n
n
∑

i=1

σ2
1(X1i)n

−2W 2(X1i)
h2(X1i)

f2(X1i)
= E

[

σ2
1(X11)W

2(X11)
h2(X11)

f2(X11)

]

=

∫

σ2
1(x)W 2(x)

h2(x)

f2(x)
F (dx), as desired

�

Proof of Theorem 2.4. Let m1 6= m2 be fixed but arbitrary.Then Lemmas 4.4 – 4.8 again
yield

√
NT̂ =

√
N

∫

W (x)[m̂1(x) − m1(x)]H(dx)

−
√

N

∫

W (x)[m̂2(x) − m2(x)]H(dx)

+
√

N

∫ ∫

W (x)[m1(x) − m2(x)][F̂ (dx1) − F (dx1)]G(dx2)

+
√

N

∫ ∫

W (x)[m1(x) − m2(x)]F (dx1)[Ĝ(dx2) − G(dx2)]

+
√

N

∫

W (x)[m1(x) − m2(x)]H(dx) + oP(1).

According to Lemmas 4.9 and 4.10 the first two terms converge in distribution. The third
integral converges in distribution to

√
1 − λ

∫ ∫

W (x)[m1(x) − m2(x)]B◦(F (dx1))G(dx2)

while the fourth goes to

√
λ

∫ ∫

W (x)[m1(x) − m2(x)]F (dx1)B
◦(G(dx2)).
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Here B0 is a Brownian Bridge. See Billingsley (1968). The last term, however, tends to

+∞ , if

∫

W (x)[m1(x) − m2(x)]H(dx) > 0

−∞ , if

∫

W (x)[m1(x) − m2(x)]H(dx) < 0.

Conclude that
√

N |T̂ | → ∞ in probability whenever
∫

W (m1 − m2)dH 6= 0. Hence PH1(t =
1) → 1. �
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