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The Classical Empirical Process Technology Circa 1972

Uniform Empirical Distribution

Let U,U1, U2, ..., be independent Uniform (0, 1) random variables. For each integer n ≥ 1 the
empirical distribution function based on U1, ..., Un, is defined to be

Gn(t) = n−1
n∑

i=1

1{Ui ≤ t}, −∞ < t < ∞. (1)

Gn is a very good estimator of the uniform cumulative distribution

FU (t) =


1 , t ≥ 1 ,
t , 0 ≤ t < 1 ,
0 , t < 0 .

Glivenko–Cantelli Theorem

The Glivenko–Cantelli Theorem says that

sup
0≤t≤1

|Gn (t)− t| → 0, a.s., as n →∞.

Actually more is known.

Dvoretsky, Kiefer and Wolfowitz Inequality

The Dvoretsky, Kiefer and Wolfowitz (1956) Inequality says that for some constant K > 0, all
n ≥ 1 and any r > 0

P

{
sup

0≤t≤1
|Gn (t)− t| > r

}
≤ K exp

(
−2r2n

)
.

Massart (1990) has shown that one can choose K = 2. Notice that when this inequality is combined
with the Borel–Cantelli lemma, we get that

sup
0≤t≤1

∣∣∣G̃n (t)− t
∣∣∣→ 0, a.s., as n →∞, (2)
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for any sequence
{

G̃n

}
of probabilistically equivalent versions of {Gn}, meaning that G̃n =d Gn,

for each n ≥ 1.

Linearity of Gn

A very useful property of Gn is its linearity in various senses.

Fact 1. (Linearity in Probability) For all ε > 0 there exists a λ > 1 such that for all n ≥ 1,

P

{
1
λ

<
Gn (t)

t
< λ for all U1,n ≤ t ≤ 1

}
≥ 1− ε,

where U1,n denotes the minimum of U1, ..., Un.

Fact 2. (Poisson Approximation) There exists a standard rate one Poisson process N (x) , x ≥ 0,

and a sequence
{

G̃n

}
of probabilistically equivalent versions of {Gn} such that

sup
0≤x≤n

∣∣∣∣∣nG̃n (x/n)
x

− N (x)
x

∣∣∣∣∣→P 0, as n →∞.

Fact 3. For any sequence an > 0, an → 0 and nan →∞ as n →∞,

sup
an≤t≤1

∣∣∣∣Gn (t)
t

− 1
∣∣∣∣→P 0, as n →∞.

Fact 4. For any sequence an > 0, an → 0 and nan/ log log n →∞ as n →∞,

sup
an≤t≤1

∣∣∣∣Gn (t)
t

− 1
∣∣∣∣→ 0, a.s., as n →∞.

For Fact 1 refer to Pyke and Shorack (1968). For the rest of these facts consult Wellner (1978) and
the references therein. All of them are found in Shorack and Wellner (1986).

Uniform Empirical Process

The uniform empirical process based on U1, ..., Un, is defined to be

αn(t) =
√

n{Gn(t)− t}, t ∈ [0, 1] . (3)

It is readily checked that

αn(0) = αn(1) = 0, Eαn (t) = 0 for all t ∈ [0, 1]

and
Cov (αn (s) , αn (t)) = s ∧ t− st, s, t ∈ [0, 1] ,

where s ∧ t = min(s, t). The multivariate central limit theorem implies that for any choice of
t1, . . . , tm, m ≥ 1,

(αn (t1) , . . . , αn (tm)) →d (Z1, . . . , Zm) , as n →∞, (4)
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where (Z1, . . . , Zm) is multivariate normal with mean vector zero and

cov (Zi, Zj) = ti ∧ tj − titj , 1 ≤ i, j ≤ m.

Much more than (4) can be said.

Brownian Bridge

A Brownian Bridge is a continuous Gaussian process on [0, 1] such that

B(0) = B(1) = 0, EB (t) = 0 for all t ∈ [0, 1]

and
Cov (B (s) , B (t)) = s ∧ t− st, s, t ∈ [0, 1] .

The Brownian bridge B has the following representation:

B (t) = W (t)− tW (1) , t ∈ [0, 1] ,

where W is a standard Wiener process, i.e. W is a continuous Gaussian process on [0, 1] with
W (0) = 0, EW (t) = 0 for 0 ≤ t ≤ 1 and E (W (t) W (s)) = s ∧ t, s, t ∈ [0, 1] . (For more about the
Brownian bridge see pages 182–184 of Hájek and Šidák (1967).)

Donsker’s famous and powerful functional central limit theorem implies that αn converges in dis-
tribution to a Brownian bridge B. We shall soon see that much more can be said about how αn

converges to B. (Consult Billingsley (1968) for a proof of Donsker’s theorem.)

The Skorokhod Representation Theorem

The Skorokhod Representation Theorem for the uniform empirical process αn says that there exists
a sequence {α̃n} of probabilistically equivalent versions of {αn}, meaning α̃n =d αn, for each n ≥ 1,
and a fixed Brownian bridge B such that

sup
0≤t≤1

|α̃n (t)−B (t)| → 0, a.s., as n →∞. (5)

Birnbaum–Marshall Inequality (1961)

The first step towards a weighted approximation was based upon the following application of the
Birnbaum–Marshall inequality, which implies that for any positive increasing function q on (0, 1/2]
such that ∫ 1/2

0

du

q2 (u)
< ∞

there exists a constant C such that for all r > 0 and 0 < δ < 1/2,

P

{
sup

0<s≤δ
|αn(s)| /q (s) > r

}
+ P

{
sup

0<s≤δ
|αn(1− s)| /q (s) > r

}
≤ C

r2

∫ δ

0

du

q2 (u)

and

P

{
sup

0<s≤δ
|B(s)| /q (s) > r

}
+ P

{
sup

0<s≤δ
|B(1− s)| /q (s) > r

}
≤ C

r2

∫ δ

0

du

q2 (u)
.
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This says of course that for all r > 0

lim
δ↘0

lim sup
n→∞

[
P

{
sup

0<s≤δ
|αn(s)| /q (s) > r

}
+ P

{
sup

0<s≤δ
|αn(1− s)| /q (s) > r

}]
= 0 (6)

and

lim
δ↘0

[
P

{
sup

0<s≤δ
|B(s)| /q (s) > r

}
+ P

{
sup

0<s≤δ
|B(1− s)| /q (s) > r

}]
= 0. (7)

Using this inequality one can show that for any probability space such that

sup
0≤t≤1

|α̃n (t)−Bn (t)| →p 0,

where {α̃n} is a sequence of probabilistically equivalent versions of {αn}, and {Bn} is an appropriate
sequence of Brownian bridges, one has for any positive function q on (0, 1), increasing on (0, 1/2]
and decreasing on [1/2, 1) such that ∫ 1

0

du

q2 (u)
< ∞

one has
sup

0<t<1
|α̃n (t)−Bn (t)| /q (t) →p 0.

We shall return to this soon.

The Classical Empirical Process Technology Circa 1972 consisted of the following basic
ingredients:

1. The Glivenko–Cantelli Theorem;

2. Linearity in Probability;

3. Birnbaum–Marshall Inequality;

4. The Skorokhod Representation Theorem;

in combination with the probability integral transformation, namely, that if X is a random variable
with cumulative distribution function F , then

X =d Q (U) , (8)

where U is a Uniform (0, 1) random variable and Q is the inverse or quantile function of F defined
to be

Q (s) = inf {x : F (x) ≥ s} for 0 < s < 1.

An Example of the Use of the 1972 Technology: The Asymptotic Normality

of L-statistics

The basic ideas in this section originate from Shorack (1972). Let X, X1, . . . , Xn be i.i.d. with
common cumulative distribution function F with corresponding quantile function Q and let X1,n ≤
· · · ≤ Xn,n denote their order statistics. Consider the L–statistic

Ln =
n∑

i=1

ci,nXi,n,
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where c1,n, . . . , cn,n are constants. By the probability integral transformation (8)

(X1, . . . , Xn) =d (Q (U1) , . . . , Q (Un)) ,

where U1, . . . , Un are i.i.d. Uniform (0, 1) random variables. We then get that

Ln =d

n∑
i=1

ci,nQ (Ui,n) ,

where U1,n ≤ · · · ≤ Un,n are the order statistics of U1, . . . , Un.

From now on for simplicity of presentation assume that

ci,n =
∫ i/n

(i−1)/n
J(u)du, i = 1, . . . , n,

with J being a continuous integrable function on (0, 1). Write

µ =
∫ 1

0
Q(u)J(u)du,

where we assume
∫ 1
0 |Q(u)J(u)| du < ∞. (One can weaken the continuity assumption on J to the

requirement that J and Q do not share discontinuity points.)

It was observed by Shorack (1972) that∫ 1

0

∫ t

Gn(t)
J(u)dudQ (t) =

n∑
i=1

ci,nQ (Ui,n)− µ =d Ln − µ.

Now by applying the mean value theorem for each t ∈ (0, 1) we can find a θn (t) between Gn (t)
and t so that

J (θn (t)) (t−Gn (t)) =
∫ t

Gn(t)
J(u)du.

So we get that
√

n

∫ 1

0
J (θn (t)) (t−Gn (t)) dQ (t) =d

√
n (Ln − µ) . (9)

We shall be using the tools:

1. The Glivenko–Cantelli Theorem;

2. Linearity in Probability;

3. Birnbaum–Marshall Inequality;

4. The Skorokhod Representation Theorem.

To obtain the asymptotic distribution of
√

n (Ln − µ) it is clear from (9) that it suffices to determine
that of ∫ 1

0
J (θn (t))αn (t) dQ (t) . (10)

We shall now switch to the probability space of the Skorokhod representation. We shall work with
a sequence {α̃n} of probabilistically equivalent versions of {αn} and a fixed Brownian bridge B
such that

sup
0≤t≤1

|α̃n (t)−B (t)| → 0, a.s., as n →∞.
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So instead of (10), we shall investigate its probabilistically equivalent version∫ 1

0
J
(
θ̃n (t)

)
α̃n (t) dQ (t) . (11)

First by the Glivenko–Cantelli theorem (see (2) above)

sup
0≤t≤1

∣∣∣θ̃n (t)− t
∣∣∣→ 0, a.s., as n →∞. (12)

Therefore by continuity of J and B and (12) for each 0 < δ < 1/2,

sup
δ≤t≤1−δ

∣∣∣J (θ̃n (t)
)

α̃n (t)− J(t)B(t)
∣∣∣→ 0, a.s., as n →∞. (13)

Hence it is natural then to assume that somehow in some stochastic sense∫ 1

0
J
(
θ̃n (t)

)
α̃n (t) dQ (t) →

∫ 1

0
J (t) B (t) dQ (t) , (14)

from which it can be inferred that∫ 1

0
J
(
θ̃n (t)

)
α̃n (t) dQ (t) →d

∫ 1

0
J (t) B (t) dQ (t) . (15)

Since under suitable assumptions on J and Q the random variable
∫ 1
0 J (t) B (t) dQ (t) is a normal

random variable with mean 0 and variance

σ2(J) =
∫ 1

0

∫ 1

0
(s ∧ t− st)J(s)J(t)dQ(s)dQ(t) < ∞,

we could conclude from (15) that
√

n (Ln − µ) →d N
(
0, σ2(J)

)
.

We shall now show how to use the tools in 1, 2, 3 and 4 to establish (14). Choose any 0 < δ < 1/2
and decompose ∫ 1

0
J
(
θ̃n (t)

)
α̃n (t) dQ (t)

=
∫ 1−δ

δ
J
(
θ̃n (t)

)
α̃n (t) dQ (t) +

∫ δ

0
J
(
θ̃n (t)

)
α̃n (t) dQ (t) +

∫ 1

1−δ
J
(
θ̃n (t)

)
α̃n (t) dQ (t)

= Mn (δ) + Ln (δ) + Un (δ) .

Also write ∫ 1

0
J (t) B (t) dQ (t)

=
∫ 1−δ

δ
J (t) B (t) dQ (t) +

∫ δ

0
J (t) B (t) dQ (t) +

∫ 1

1−δ
J (t) B (t) dQ (t)

= M (δ) + L (δ) + U (δ) .

Clearly by (13)
Mn (δ) → M (δ) , a.s., as n →∞. (16)
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Now impose the assumptions: for some ν1 > 0 and ν2 > 0 with −1/2 + ν1 < 0 and −1/2 + ν2 < 0

|J(u)| ≤ Ku−1/2+ν1 and |J(1− u)| ≤ Ku−1/2+ν2 , for 0 < u ≤ 1/2. (17)

Further assume that for some µ1 > 0 and µ2 > 0 with −1/2 + ν1 + µ1 < 0 and −1/2 + ν2 + µ2 < 0

B1 =
∫ 1/2

0
tµ1dQ (t) < ∞ and B2 =

∫ 1

1/2
(1− t)µ2 dQ (t) < ∞. (18)

The conditions on J and Q imply that σ2(J) < ∞. (From now on to ease notation we shall drop
the ∼’s.) Using the linearity in probability Fact 1 and the fact that U1,n →P 0, for any ε > 0 we
can choose a λ > 1 and n large enough so that with probability greater than or equal to 1− ε ,

1
λ

<
Gn (t)

t
< λ for all U1,n ≤ t ≤ 1 and U1,n < δ,

which implies by the first part of (17) that for all U1,n ≤ t ≤ δ,

|J(θn (t))| ≤ Kλt−1/2+ν1 (19)

for some Kλ > 0. Now for 0 < t < U1,n ≤ 1/2, by definition,

J (θn (t)) (t−Gn (t)) = J (θn (t)) t =
∫ t

0
J(u)du,

so that inequality (19) still holds. Therefore on this random set

|Ln (δ)| ≤ Kλ

∫ δ

0
|αn (t)| t−1/2+ν1dQ (t)

≤ Kλ sup
0<t≤δ

|αn (t)| t−1/2+ν1+µ1B1.

Notice that the function
q (t) = t−1/2+ν1+µ1 , 0 < t ≤ 1/2,

satisfies the conditions of the Birnbaum–Marshall inequality, so that for all ε > 0,

lim
δ↘0

lim sup
n→∞

P

{
sup

0<t≤δ
|αn(t)| t−1/2+ν1+µ1 > ε

}
= 0.

Thus we get for all ε > 0,

lim
δ↘0

lim sup
n→∞

P

{
sup

0<t≤δ
|Ln(δ)| > ε

}
= 0.

In the same way one can show that for all ε > 0,

lim
δ↘0

lim sup
n→∞

P

{
sup

0<t≤δ
|Un(δ)| > ε

}
= 0.

Moreover, similarly, one can prove that for all ε > 0,

lim
δ↘0

[
P

{
sup

0<t≤δ
|L(δ)| > ε

}
+ P

{
sup

0<t≤δ
|U(δ)| > ε

}]
= 0.
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Hence by “ε−squeezing” (see Theorem 4.2 of Billingsley (1968)),∫ 1

0
J
(
θ̃n (t)

)
α̃n (t) dQ (t) →P

∫ 1

0
J (t) B (t) dQ (t) .

We have just proved a simplified version of Theorem 1 of Shorack (1972). For further advances in
central limit theorems for L-statistics refer to Mason and Shorack (1990, 1992). There the proofs
are based on the weighted approximation stated in Theorem 1 below.

q−metric convergence

Pyke and Shorack (1968) were interested in characterizing those positive functions q on (0, 1)
increasing on (0, 1/2] and decreasing on [1/2, 1) such that for the Skorokhod representation

sup
0<t<1

|α̃n (t)−Bn (t)| /q (t) →p 0, as n →∞. (20)

They called this q−metric convergence of the uniform empirical process to a Brownian bridge. An
application of the Birnbaum–Marshall inequality shows that for (20) to hold it suffices that∫ 1

0

dt

q2 (t)
< ∞.

Here is the argument. We have for any 0 < δ < 1/2,

sup
δ<t<1−δ

|α̃n (t)−Bn (t)| /q (t) ≤ max
(

1
q (δ)

,
1

q (1− δ)

)
sup

0<t<1
|α̃n (t)−Bn (t)| ,

sup
0<t≤δ

|α̃n (t)−Bn (t)| /q (t) ≤ sup
0<t≤δ

|α̃n (t)| /q(t) + sup
0<t≤δ

|Bn (t)| /q(t),

with a similar bound for sup1−δ<t≤1 |α̃n (t)−Bn (t)| /q (t) . Using (5), (6) and (7), we see that (20)
follows by “ε−squeezing”.

Two Intermediate Steps Towards Weighted Approximations

O’Reilly’s Theorem (1974)

O’Reilly’s theorem was in a sense an intermediate step towards the development of the weighted
approximation methodology, since the search for an easy and transparent proof of it led to the
creation of the first weighted approximation of the uniform empirical process by a sequence of
Brownian bridges.

Here is a statement of O’Reilly’s theorem. Let q be a positive function on (0, 1), increasing on
(0, 1/2] and decreasing on [1/2, 1). For any probability space such that

sup
0<t<1

|α̃n (t)−Bn (t)| →p 0,

where {α̃n} is a sequence of probabilistically equivalent versions of {αn}, and {Bn} is an appropriate
sequence of Brownian bridges, one also has

sup
0<t<1

∣∣∣α̃n (t)− B̃n (t)
∣∣∣ /q (t) →p 0
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if and only if for all c > 0,

I(c, q) :=
∫ 1

0
(s (1− s))−1 exp

(
− cq2 (s)

s(1− s)

)
ds < ∞. (21)

The crucial facts established by O’Reilly (1974) were

lim
δ↘0

(
sup

0<s≤δ
|B(s)| /q (s) + sup

0<s≤δ
|B(1− s)| /q (1− s)

)
= 0, a.s.

if and only if for all c > 0, I(c, q) < ∞.

The KMT (1975) Approximation

Komlós, Major and Tusnády [KMT] (1975) published the following remarkable Brownian bridge
approximation to the uniform empirical process.

Theorem [KMT] There exists a probability space (Ω, A, P ) with independent Uniform (0, 1)
random variables U1, U2, . . . , and a sequence of Brownian bridges B1, B2, . . . , such that for all
n ≥ 1 and −∞ < x < ∞,

P

{
sup

0≤t≤1
|αn(t)−Bn(t)| ≥ n−1/2(a log n + x)

}
≤ b exp(−cx), (22)

where a, b and c are suitable positive constants independent of n and x.

Notice that when inequality (22) is combined with the Borel–Cantelli lemma we get the rate of
approximation

sup
0≤t≤1

|αn(t)−Bn(t)| = O

(
log n√

n

)
, a.s.

For some time people did not know what to do with the KMT (1975) approximation to the uniform
empirical process. This was complicated by the fact that KMT (1975) only provided a sketch of
its proof. Complete proofs are now available. Consult Mason and van Zwet (1987) with additional
notes in Mason (2001a), Péter Major’s website, Bretagnolle and Massart (1989), Major (1999) and
Dudley (2000). Bretagnolle and Massart (1989) determined values for the constants a, b and c in
(22).

Shorack (1979) was able to use KMT (1975) to give a simple proof of O’Reilly’s theorem under
the additional assumption that q (t) /t1/2 ↗∞ and q (1− t) /t1/2 ↗∞ as t ↘ 0. In this case, it is
readily verified that I (q, c) < ∞ for all c > 0 is equivalent to

q (t) / (t log log (1/t))1/2 →∞ and q (1− t) / (t log log (1/t))1/2 →∞ as t ↘ 0. (23)

Not all q for which (21) is finite for all c > 0 satisfy (23). (See M. Csörgő, S. Csörgő, Horváth and
Mason [Cs-Cs-H-M] (1986).)

The First Weighted Approximation

A much stronger result than the O’Reilly theorem is the following weighted approximation in
probability of special versions of the αn’s by a sequence of Brownian bridges {Bn}.
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Theorem 1. On a rich enough probability space there exists a sequence of independent Uniform
(0, 1) random variables U1, U2, . . . , and a sequence of Brownian bridges B1, B2, . . . , such that for
the uniform empirical processes αn based on the Ui’s and all 0 < ν < 1

4

sup
0≤t≤1

|αn(t)−Bn(t)|
(t(1− t))1/2−ν

= Op(n−ν). (24)

Moreover, statement (24) remains true for ν = 0 when Bn is replaced by Bn, where

Bn(t) = Bn (t) 1 {t ∈ [1/n, 1− 1/n]} .

M. Csörgő, S. Csörgő, Horváth and Mason [Cs-Cs-H-M] (1986) first proved this result. Mason
and van Zwet (1987) obtained the best possible version of it, allowing 0 ≤ ν < 1

2 . Both of these
results were based upon the strong approximation methods and results of KMT (1975) . Later
it was discovered that a very useful version of this result could be derived using the Skorokhod
embedding. More will be said about this later.

Examples of the Use of Weighted Approximations

The Goal of Weighted Approximations

The goal of the weighted approximation technique is to transfer the asymptotic distributional
analysis of a sequence of functionals of the uniform empirical process αn to that of a sequence of
functionals of Brownian bridges Bn.

Example 1: O’Reilly’s Theorem Revisited

Only assume that q (s) /s1/2 and q (1− s) /s1/2 →∞ as s ↘ 0. Any q function for which I (c, q) < ∞
for some c > 0 satisfies this condition. Assume that we are on the probability space of Theorem 1.
It is easy to show that

sup
0≤t≤1

|αn(t)−Bn(t)| = op(1),

when combined with

sup
0≤t≤1

|αn(t)−Bn(t)|
(t(1− t))1/2

= Op(1)

gives for any such q

sup
0<t<1

|αn(t)−Bn(t)|
q (s)

= op(1).

So clearly the underlying rationale behind O’Reilly’s conditions was to characterize when

sup
0<s≤1/n

|Bn(s)| /q (s) →P 0, as n →∞,

and
sup

0<s≤1/n
|Bn(1− s)| /q (1− s) →P 0, as n →∞.

Example 2: Asymptotic Distribution of Rényi–Type Statistics
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Let an be any sequence of positive constants such that 0 < an < β < 1, for some 0 < β < 1,
and nan →∞. Csáki (1974) established by direct combinatorial methods the somewhat surprising
result that (

an

1− an

)1/2

sup
an≤s≤1

αn (s)
s

→d sup
0≤s≤1

W (s) ,

where W is a standard Wiener process on [0, 1].

Proof. Choose 0 < ν < 1/4. Now on the probability space of Theorem 1,(
an

1− an

)1/2

sup
an≤s≤1

∣∣∣∣αn (s)−Bn(s)
s

∣∣∣∣
≤
(

an

1− an

)1/2

a−1/2
n nν sup

an≤s≤1

∣∣∣∣αn (s)−Bn(s)
s1/2−ν

∣∣∣∣ 1
(nan)ν = OP (1)o (1) = oP (1).

But {(
an

1− an

)1/2 B (s)
s

, an ≤ s ≤ 1

}
=d

{
W

((
an

1− an

)
1− s

s

)
, an ≤ s ≤ 1

}
,

Thus

sup
an≤s≤1

(
an

1− an

)1/2 B (s)
s

=d sup
0≤t≤1

W (t) ,

which completes the proof. For a generalized version of this result refer to Mason (1985), and
for applicable versions of the Rényi confidence bands, also obtained by similar ideas, see S. Csörgő
(1998) and Megyesi (1998).

A Typical Application of Weighted Approximations

Often one is interested in establishing the asymptotic normality of an integral function of a process
vn, say,

In =
∫ 1

0
vn(t)dµn(t),

where µn is some measure on (0, 1). Whenever there exists a weighted approximation of vn by a
Brownian bridge Bn, one can typically show that for any τ > 0,∣∣∣∣∣

∫ 1−τ/n

τ/n
vn(t)dµn(t)−

∫ 1−τ/n

τ/n
Bn(t)dµn(t)

∣∣∣∣∣ ≤
sup

τ
n
≤t≤1− τ

n

nν |vn(t)−Bn(t)|
(t(1− t))1/2−ν

∫ 1−τ/n
τ/n (t(1− t))1/2−νdµn(t)

nν

 = op(1).

This is the crucial step to approximate In directly by the normal random variable∫ 1

0
Bn(t)dµn(t)

and establish the asymptotic normality of In–should it, in fact, be asymptotically normal.

Example 3: A Central Limit Theorem for Winsorized–type Sums
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Let X, X1, X2, ..., be a sequence of i.i.d. nondegenerate random variables with common distribution
function F with left continuous inverse function Q. Choose 0 < a < 1 − b < 1 and n ≥ 1, and
consider the Winsorized–type sum

Wn(a, b) :=
n∑

i=1

[Xi1{Q(a) ≤ Xi < Q(1− b)}]

+
n∑

i=1

[Q(a)1{Xi < Q(a)}+ Q(1− b)1{Xi ≥ Q(1− b)}]

These sums can be written as

n−1/2{Wn(a, b)− EWn(a, b)} = −
d

∫ 1−b

a
αn(s)dQ(s).

Set

σ2(a, b) =
∫ 1−b

a

∫ 1−b

a
(s ∧ t− st)dQ(s)dQ(t) = Var W1(a, b).

We show below that if an and bn are sequences of positive constants such that 0 < an < 1− bn < 1
for n ≥ 1, and as n →∞,

an → 0, nan →∞, bn → 0 and nbn →∞,

that

Zn(an, bn) :=
∫ 1−bn

an

αn(s)dQ(s)/σ(an, bn) →
d

Z, as n →∞, (N)

where Z is a standard normal random variable. This was a crucial step in the S. Csörgő, Haeusler
and Mason (1988a) probabilistic approach to the asymptotic distribution of sums of independent,
identically distributed random variables; see also S. Csörgő (1990) and S. Csörgő and Megyesi
(2002).

Proof of (N).

Denote the standard normal random variable

Zn :=
∫ 1−bn

an

Bn(s)dQ(s)/σ(an, bn)

Notice that on the probability space of Theorem 1,

|Zn(an, bn)− Zn| ≤∫ 1/2

an

|αn(s)−Bn(s)|dQ(s)/σ(an, 1/2)

+
∫ 1−bn

1/2
|αn(s)−Bn(s)|dQ(s)/σ(1/2, bn),

which for any 0 < ν < 1/4 is

≤ ∆n,ν(1)n−ν

∫ 1/2

an

(s(1− s))1/2−νdQ(s)/σ(an, 1/2)

12



+∆n,ν(1)n−ν

∫ 1−bn

1/2
(s(1− s))1/2−νdQ(s)/σ(1/2, bn),

where
∆n,ν(1) := sup

1/n≤t≤1−1/n

nν |αn(t)−Bn(t)|
(t(1− t))1/2−ν

.

Using the fact (e.g. Inequality 2.1 of Shorack (1997)) that for any 0 < c < 1− d < 1∫ 1−d

c
(s(1− s))1/2−νdQ(s)/σ(c, d) ≤ (3/

√
ν)(c ∧ d)−ν , (25)

we see that this last bound is

≤ (3/
√

ν)(nan)−νOp(1) + (3/
√

ν)(nbn)−νOp(1) = op (1) .

Use of this result to prove asymptotic normality of intermediate trimmed sums

Let X1, . . . , Xn be i.i.d. F with order statistics X1,n ≤ · · · ≤ Xn,n. Consider integers kn satisfying
1 ≤ kn ≤ n/2, n ≥ 3, kn →∞ and kn/n → 0, and the intermediate trimmed sum

Tn (kn) =
n−kn∑

i=kn+1

Xi,n.

Under certain necessary and sufficient conditions (see S. Csörgő and Haeusler and Mason (1988))

Tn (kn)− n
∫ 1−kn/n
kn/n Q(u)du

√
nσ (kn/n, kn/n)

→d Z, (Z)

where Z is standard normal. The reason for the normality is that the necessary and sufficient
conditions for (Z) to hold give

Tn (kn)− n
∫ 1−kn/n
kn/n Q(u)du

√
nσ (kn/n, kn/n)

+

∫ 1−kn/n
kn/n αn(u)dQ(u)

σ (kn/n, kn/n)
= oP (1)

and, as we have just shown, it is always true that∫ 1−kn/n
kn/n αn(u)dQ(u)

σ (kn/n, kn/n)
→d Z.

Example 4: Central Limit Theorem for the Hill Estimator (S. Csörgő and Mason
(1985))

Let Y, Y1, . . . , Yn be i.i.d. G with a regularly varying upper tail with index 1/c, c > 0, that is for
all t > 0

1−G (xt)
1−G(x)

→ t−1/c, as x →∞.

Now set X = log (max(Y, 1)), Xi = log (max(Yi, 1)) , i = 1, . . . , n. Further let X1,n ≤ · · · ≤ Xn,n

denote the order statistics of X1, . . . , Xn. The Hill estimator of c is

ĉn =
kn∑
i=1

Xn+1−i,n

kn
−Xn−kn,n,

13



where kn is a sequence of positive integers satisfying 1 ≤ kn < n, kn → ∞ and kn/n → 0. Mason
(1983) showed that for any such sequence

ĉn →P c, as n →∞.

Let F be the cumulative distribution of X and Q be its inverse. We see by the probability integral
transformation (8) that

ĉn =d

kn∑
i=1

Q (Un+1−i,n)
kn

−Q (Un−kn,n) .

Set

cn =
n

kn

∫ 1

1−kn/n
(1− s) dQ (s) .

One can verify that cn → c as n → ∞. Under additional assumptions (see S. Csörgő and Mason
(1985)) it can be shown that on the probability space of Theorem 1,√

kn (ĉn − cn) = Zn + oP (1),

where

Zn := −
√

n

kn

∫ 1

1−kn/n
Bn (s) dQ (s) + c

√
n

kn
Bn

(
1− kn

n

)
.

The random variable Zn is normal with mean 0 and variance, which converges to c2 as n → ∞.
The essential step in the proof is the replacement∣∣∣∣∣

√
n

kn

∫ 1

1−kn/n
αn (s) dQ (s)−

√
n

kn

∫ 1

1−kn/n
Bn (s) dQ (s)

∣∣∣∣∣ ,
which for any 0 < ν < 1/4 is

≤
√

n

kn

∫ 1

1−kn/n

|αn (s)−Bn (s)|
(1− s)1/2−ν

(1− s)1/2−ν dQ (s)

≤ nν sup
1− kn

n
≤s≤1

|αn (s)−Bn (s)|
(1− s)1/2−ν

∫ 1

1−kn/n
(1− s)1/2−ν dQ (s)

(
n

kn

)1/2−ν

k−ν
n ,

which since
nν sup

1− kn
n
≤s≤1

|αn (s)−Bn (s)|
(1− s)1/2−ν

= OP (1)

and ∫ 1

1−kn/n
(1− s)1/2−ν dQ (s)

(
n

kn

)1/2−ν

→ c

1/2− ν
, as n →∞,

is equal to oP (1).

For generalizations of this estimator refer to S. Csörgő, Deheuvels and Mason (1985) and Groene-
boom, Lopuhaä and de Wolf (2003). In both of these papers the weighted approximation in Theorem
1 is the crucial tool used in the derivation of the asymptotic distribution of the estimators. For
related applications of the method we refer to S. Csörgő and Viharos (1995, 1998, 2002, 2006).

Further Applications of this Type
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The Cs-Cs-H-M (1986) weighted approximation has been applied very successfully in the study of

1. Central Limit Theorems for Trimmed Sums

n−kn∑
i=kn+1

Xi,n.

See S. Csörgő, Horváth and Mason (1986), S. Csörgő and Haeusler and Mason (1988b) and S.
Csörgő and Megyesi (2001).

2. Central Limit Theorems for Sums of Extreme Values

kn∑
i=1

Xi,n.

See S. Csörgő and Mason (1986), S. Csörgő and Haeusler and Mason (1991) and Viharos (1993,
1995).

3. Central Limit Theorems for L-statistics

n∑
i=1

ci,nXi,n.

See Mason and Shorack (1990, 1992)

4. Bootstrap See S. Csörgő and Mason (1989) and Deheuvels, Mason and Shorack (1993).

5. Bahadur–Kiefer Processes See Deheuvels and Mason (1990) and Beirlant, Deheuvels, J. Einmahl
and Mason (1991).

6. Goodness of fit tests See del Barrio, Cuesta–Albertos and Matrán (2000) and S. Csörgő (2003).

For further applications refer to the proceedings volume edited by Hahn, Mason and Weiner (1991),
the monograph by M. Csörgő and Horváth (1993) and the graduate probability text by Shorack
(2000).

The Mason and van Zwet Refinement of KMT

Mason and van Zwet (1987) obtained the following refinement of the KMT (1975) Brownian bridge
approximation to the uniform empirical process.

Theorem 2. There exists a probability space (Ω, A, P ) with independent Uniform (0, 1) random
variables U1, U2, . . . , and a sequence of Brownian bridges B1, B2, . . . , such that for all n ≥ 1,
1 ≤ d < n, and −∞ < x < ∞,

P

{
sup

0≤t≤d/n
|αn(t)−Bn(t)| ≥ n−1/2(a log d + x)

}
≤ b exp(−cx)

and

P

{
sup

1−d/n≤t≤1
|αn(t)−Bn(t)| ≥ n−1/2(a log d + x)

}
≤ b exp(−cx),

where a, b and c are suitable positive constants independent of n, d and x.
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Setting d = n into these inequalities yields the original KMT inequality (22). Rio (1994) has
computed values for the constants in these inequalities. Cs-Cs-H-M (1986) had earlier established
that the analogs to these inequalities held with αn replaced by βn (the uniform quantile process) on
the probability space that they constructed so that (24) is valid. The process βn is defined below.

Mason and van Zwet Weighted Approximations

Mason and van Zwet (1987) pointed out that their inequality leads to the following useful weighted
approximations. For any 0 ≤ ν < 1/2, n ≥ 1, and 1 ≤ d < n let

∆(1)
n,ν(d) := sup

d/n≤t≤1

nν |αn(t)−Bn(t)|
t1/2−ν

, (26)

∆(2)
n,ν(d) := sup

0≤t≤1−d/n

nν |αn(t)−Bn(t)|
(1− t)1/2−ν

, (27)

and
∆n,ν(d) := sup

d/n≤t≤1−d/n

nν |αn(t)−Bn(t)|
(t(1− t))1/2−ν

. (28)

On the probability space of Theorem 2, one has

∆n,ν(1) = Op(1),

with the same holding with ∆n,ν(1) replaced by ∆(1)
n,ν(1) and ∆(2)

n,ν(1).

An Exponential Inequality for the Weighted Approximation to the Uniform Empirical
Process

Mason (2001b) derived the following improved version of the Mason and van Zwet weighted ap-
proximations.

Theorem 3. (An Improved Mason and van Zwet Result). On the probability space of KMT
(1975) for every 0 ≤ ν < 1/2 there exist positive constants Aν and Cν such that for all n ≥ 2,
1 ≤ d < n and 0 ≤ x < ∞,

P {∆n,ν(d) ≥ x}

= P

{
sup

d/n≤t≤1−d/n

nν |αn(t)−Bn(t)|
(t(1− t))1/2−ν

≥ x

}

≤ 2Aν exp(d1/2−νCν) exp

(
−d1/2−νcx

4

)
,

with similar inequalities for ∆(1)
n,ν(d) and ∆(2)

n,ν(d).

A Moment Bound for the Weighted Approximation

Theorem 3 readily yields the following uniform moment bounds for (26), (27) and (28).
Proposition 1. On the KMT (1975) approximation probability space for all 0 ≤ ν < 1/2 there
exists a γ > 0 such that

sup
n≥2

E exp (γ∆n,ν(1)) < ∞,
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with the same statement holding with ∆n,ν(1) replaced by ∆(1)
n,ν(1) or ∆(2)

n,ν(1).

A Functional Version

Now for each integer n ≥ 2 let Rn denote a class of nondecreasing left continuous functions r
on [1/n, 1 − 1/n]. Assume there exists a sequence of positive constants dn such that for some
0 ≤ ν < 1/2

sup
n≥2

sup
r∈Rn

d−1
n

∫ 1−1/n

1/n
(s(1− s))1/2−νdr(s) =: M < ∞. (29)

From Proposition 1 we obtain

Proposition 2. Let {Rn, n ≥ 2}, denote a sequence of classes of nondecreasing left continuous
functions on [1/n, 1 − 1/n] satisfying (29) for some 0 ≤ ν < 1/2. On the probability space of the
KMT (1975) approximation (22) there exists a γ > 0 such that

sup
n≥2

E exp(γnνIn) < ∞,

where

In := sup
r∈Rn

d−1
n

∫ 1−1/n

1/n
|αn(s)−Bn(s)|dr(s).

Proposition 2 follows trivially from Proposition 1 by observing that nνIn ≤ ∆n,ν(1)M.

The Uniform Quantile Process

For each n ≥ 1, let U1,n ≤ ... ≤ Un,n denote the order statistics of U1, ..., Un. Define the empirical
quantile function on [0, 1]

Un(t) = Uk,n, (k − 1)/n < t ≤ k/n, for k = 1, ..., n,

and Un(0) = U1,n. Define the uniform quantile process

βn(t) =
√

n{t− Un(t)}, for 0 ≤ t ≤ 1. (30)

For any n ≥ 2 and 0 ≤ ν < 1/4 set

Kn,ν = sup
1/n≤t≤1−1/n

nν |αn(t)− βn(t)|
(t(1− t))1/2−ν

and
Γn,ν = sup

1/n≤t≤1−1/n

nν |βn(t)−Bn(t)|
(t(1− t))1/2−ν

.

[Cs-Cs-H-M] (1986) (see also Mason (1991)) proved that for any 0 ≤ ν < 1/4, Kn,ν = Op(1). This
implies that on the probability space of the Mason and van Zwet theorem one has Γn,ν = Op(1).
On the Cs-Cs-H-M (1986) space Γn,ν = Op(1) for any 0 ≤ ν < 1/2, whereas ∆n,ν(1) = Op(1) for
any 0 ≤ ν < 1/4. So the probability spaces of Theorems 1 and 2 are, in a sense, the duals of each
other.

More Exponential Inequalities
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Theorem 4. For every 0 ≤ ν < 1/4 there exist positive constants bν and cν such that for all n ≥ 2
and 0 ≤ x < ∞,

P {Kn,ν ≥ x} ≤ bν exp(−cνx).

and there exist positive constants Aν and dν such that for all n ≥ 2 and 0 ≤ x < ∞,

P {Γn,ν ≥ x} ≤ Aν exp(−dνx).

Example of the Use of Theorem 3: A Result of del Barrio, Giné and Matrán
(1999)

We shall first need a definition.

The Domain of Attraction to a Normal Law

Let X, X1, X2, . . . , be a sequence of independent nondegenerate random variables with common
distribution function F with left continuous inverse function Q. We say that F is in the domain of
attraction of a normal law, written F ∈ DN, if there exist norming and centering constants bn and
cn such that ∑n

i=1 Xi − cn

bn
→d Z,

where Z is a standard normal random variable. S. Csörgő, Hauesler and Mason (1988) show that
one can always chose

cn = nEX

and
bn =

√
nσ (1/n, 1− 1/n) ,

where

σ2 (1/n, 1− 1/n) =
∫ 1−1/n

1/n

∫ 1−1/n

1/n
(s ∧ t− st) dQ (s) dQ (t) .

A Result of del Barrio, Giné and Matrán (1999)

Let X, X1, X2, . . . , be a sequence of independent nondegenerate random variables with common
distribution function F with left continuous inverse or quantile function Q. Introduce the empirical
distribution function

Fn(x) =
1
n

n∑
i=1

1 {Xi ≤ x} , −∞ < x < ∞.

Recall the Wasserstein distance between Fn and F,∫ ∞

−∞
|Fn(x)− F (x)| dx.

Set
Wn = n

∫ ∞

−∞
|Fn(x)− F (x)| dx.

Del Barrio, Giné and Matrán (1999) using the weighted approximation of Theorem 1, derived the
asymptotic distribution of Wn whenever F ∈ DN and satisfies some additional conditions. Its
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asymptotic distribution is highly dependent on the added conditions. Along the way they proved
that whenever F ∈ DN, for all 0 < r < 2,

sup
n≥1

E

∣∣∣∣Wn − EWn

bn

∣∣∣∣r < ∞.

We shall demonstrate how Theorem 3 leads to a quick proof of this result.

An Equivalent Version of the del Barrio, Giné and Matrán Result

Observing that

Wn =d n

∫ 1

0
|Gn(t)− t| dQ(t),

their result is equivalent to, for all 0 < r < 2,

sup
n≥2

E

∣∣∣∣∣
∫ 1
0 {|αn(t)| − E |αn(t)|} dQ(t)

σ (1/n, 1− 1/n)

∣∣∣∣∣
r

< ∞.

In a separate technical lemma they showed that whenever F ∈ DN, for all 0 < r < 2,

sup
n≥2

E

∣∣∣∣∣
∫
[1/n,1−1/n]C {|αn(t)| − E |αn(t)|} dQ(t)

σ (1/n, 1− 1/n)

∣∣∣∣∣
r

< ∞

and they used Talagrand’s (1996) exponential inequality to prove that for all r > 0,

sup
n≥2

E

∣∣∣∣∣∣
∫ 1−1/n
1/n {|αn(t)| − E |αn(t)|} dQ(t)

σ (1/n, 1− 1/n)

∣∣∣∣∣∣
r

< ∞.

A Weighted Approximation Approach to the del Barrio, Giné and Matrán Result

Giné asked the question whether it is true that on the space of Theorem 2 for all r > 0,

sup
n≥2

E

[
sup

1/n≤t≤1−1/n

nν |αn(t)−Bn(t)|
(t(1− t))1/2−ν

]r

< ∞? (31)

In which case, a weighted approximation approach could be used to show that for all r > 0,

sup
n≥2

E

∣∣∣∣∣∣
∫ 1−1/n
1/n {|αn(t)| − E |αn(t)|} dQ(t)

σ (1/n, 1− 1/n)

∣∣∣∣∣∣
r

< ∞. (32)

This was the motivation for Theorem 3, which implies (31). We shall first give a simple proof
of (32) for the case r = 2 under no assumptions on F based upon the above moment result (31)
being true, and then show by taking some pieces out of Barrio, Giné and Matrán that (32) holds
for all r > 0, again under no assumptions on F. Their proof, based on Talagrand (1996), assumes
F ∈ DN.
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In our particular situation, we will see that our aim will be to transfer our study of the moment
behavior of ∫ 1−1/n

1/n {|αn(t)| − E |αn(t)|} dQ(t)

σ (1/n, 1− 1/n)

to that of ∫ 1−1/n
1/n {|Bn(t)| − E |Bn(t)|} dQ(t)

σ (1/n, 1− 1/n)
.

What follows is somewhat technical, however, it demonstrates nicely the power of Theorem 3.

Step 1.

For any quantile function Q, one has for any 0 < ν < 1/2 (see the Shorack (1997) fact (25))

sup
n≥2

∫ 1−1/n
1/n (s(1− s))1/2−νdQ(s)

nνσ (1/n, 1− 1/n)
≤ 3√

ν
.

Thus from Proposition 2, ( with M = 3√
ν

and dn = nνσ (1/n, 1− 1/n)), we get for any 0 < ν < 1/2,
on the probability space of the KMT (1975) approximation there exists a γ > 0 such that

sup
n≥2

E exp(γnνIn) < ∞,

where

In :=

∫ 1−1/n
1/n |αn(s)−Bn(s)|dQ(s)

nνσ (1/n, 1− 1/n)
.

Note that

nνIn =

∫ 1−1/n
1/n |αn(s)−Bn(s)|dQ(s)

σ (1/n, 1− 1/n)
.

Step 2.

This implies both

sup
n≥2

E

∣∣∣∣∣∣
∫ 1−1/n
1/n {|αn(s)| − |Bn(s)|} dQ(s)

σ (1/n, 1− 1/n)

∣∣∣∣∣∣
r

< ∞ (33)

for any r > 0, and (trivially)

sup
n≥2

∣∣∣∣∣∣
∫ 1−1/n
1/n {E|αn(s)| − E|Bn(s)|} dQ(s)

σ (1/n, 1− 1/n)

∣∣∣∣∣∣ < ∞. (34)

Step 3

To finish the proof when r = 2 it clearly suffices to show that

sup
n≥2

E

∫ 1−1/n
1/n {|Bn(t)| − E |Bn(t)|} dQ(t)

σ (1/n, 1− 1/n)

2

< ∞.
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This will follow readily from a covariance formula of Nabeya (1951).

Nabeya’s (1951) Covariance Formula

Let Z1 and Z2 be two standard normal random variables with correlation ρ. Then the covariance

0 ≤ Cov (|Z1|, |Z2|) =
2
π

[
ρ arcsin ρ +

√
1− ρ2 − 1

]
≤ |ρ|.

In particular this implies that

0 ≤ Cov (|B(s)| , |B(t)|) ≤ Cov (B(s), B(t))

and thus

E

(∫ 1−1/n

1/n
( {|B(t)| − E |B(t)|} dQ (t)

)2

=
∫ 1−1/n

1/n

∫ 1−1/n

1/n
Cov (|B(s)| , |B(t)|) dQ (s) dQ (t)

≤
∫ 1−1/n

1/n

∫ 1−1/n

1/n
Cov (B(s), B(t)) dQ (s) dQ (t) = σ2 (1/n, 1− 1/n) .

Implication

This obviously implies that

sup
n≥2

E

∫ 1−1/n
1/n {|B(t)| − E |B(t)|} dQ(t)

σ (1/n, 1− 1/n)

2

≤ 1.

Notice that absolutely no assumptions are required on the underlying distribution function (quantile
function). But what about the general r > 0 case?

General Case

A stronger result is true. By recopying steps from the proof of Theorem 5.1 of Barrio, Giné and
Matrán, (also see their Proposition 6.2), based on Borell’s inequality, one gets the exponential
inequality, for all t > 0

P


∣∣∣∫ 1−1/n

1/n {|B(t)| − E |B(t)|} dQ (t)
∣∣∣

σ (1/n, 1− 1/n)
> t

 ≤ 2 exp
(
−2t2

π2

)
,

which, of course, implies that for all r > 0,

sup
n≥2

E

∣∣∣∣∣∣
∫ 1−1/n
1/n {|B(t)| − E |B(t)|} dQ(t)

σ (1/n, 1− 1/n)

∣∣∣∣∣∣
r

< ∞.

Notice again that absolutely no assumptions are required on the underlying F . This in combination
with (33) and (34) finishes our proof of the Barrio, Giné and Matrán (1999) result based on weighted
approximations.
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One can say more

Piecing all of our inequalities together we can conclude that for all n ≥ 2 and t > 0,

P


∫ 1−1/n
1/n {|αn(t)| − E |αn(t)|} dQ(t)

σ (1/n, 1− 1/n)
> t

 ≤ A exp (−Ct) ,

for suitable constants A > 0 and C > 0.

Notice once more that absolutely no assumptions are required on F . For additional investigations
along this line consult Haeusler and Mason (2003), who study the asymptotic distribution of the
moderately trimmed Wasserstein distance∫ 1−an/n

an/n {|Bn(t)| − E |Bn(t)|} dQ(t)

σ (an/n, 1− an/n)
,

where an is a sequence of positive constants satisfying an → 0 and nan →∞. As part of a general
investigation of the trimmed pth Mallows distance, Munk and Czado (1998) had previously looked
at the trimmed Wasserstein distance when 0 < an = α < 1/2.

Some Further Progress on Weighted Approximations

The original proof of Theorem 1 given by Cs-Cs-H-M (1986) was based on the KMT (1975, 1976)
Wiener process strong approximation to the partial sum process. Mason and van Zwet (1987)
derived their version through their refinement of the KMT (1975) Brownian bridge approximation
to the uniform empirical process stated in Theorem 2 above.

To establish this approximation in its full strength, i.e. (24) holds for all 0 ≤ ν < 1
2 , the use of

the KMT construction seems to be unavoidable. For the overwhelming majority of situations, it
suffices for (24) to hold for e.g. 0 < ν < 1

4 . But for this range of ν’s such a construction can
be obtained by a much less involved tool, namely, the Skorokhod embedding scheme as shown by
Mason (1991) and M. Csörgő and Horváth (1986).

It naturally then comes to mind that the martingale version of the Skorokhod embedding might
also be used to prove weighted approximation results for more general processes than αn as long
as they possess a certain martingale structure.

Exchangeable Processes

Shorack (1991) was the first to use the Skorokhod embedding for martingales in this way. He used
it to establish a weighted approximation to the finite sampling process and a weighted uniform
empirical process.

Einmahl and Mason (1992) generalized Shorack’s results to exchangeable processes, i.e. to processes
of the form

εn(t) = n−1/2
∑
i≤nt

Yn(i), 0 ≤ t ≤ 1,

where for every n ≥ 1 the random variables Yn(1), . . . , Yn(n) are exchangeable.

Assume that

(i)
∑n

i=1 Yn(i) = 0,
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(ii) 1
n

∑n
i=1 Y 2

n (i) →P σ2 for some σ2 > 0, and

(iii) max1≤i≤n Y 2
n (i)/n →P 0.

Then by Theorem 24.3 of Billingsley (1968) one concludes that εn converges weakly to σB, where
B is a Brownian bridge. Under additional regularity conditions, Einmahl and Mason (1992) were
able to obtained the following weighted approximation to εn :

Theorem 5. Assume (i) and replace (ii) by

(iv) 1
n

∑n
i=1 Y 2

n (i) = σ2 + OP

(
n−1/2

)
,

and (iii) by

(v) EY 4
n (1) ≤ K < ∞ for some K > 0 and all n ≥ 1.

Then on a suitable probability space there exist a sequence of probabilistically equivalent versions
ε̃n of εn and a sequence of Brownian bridges B1, B2, . . . , such that for all 0 ≤ ν < 1/4 and τ > 0

sup
τ/n≤t≤1−τ/n

nν |ε̃n(t)− σBn(t)|
(t(1− t))1/2−ν

= OP (1) . (35)

Einmahl and Mason (1992) point out that condition (v) can be weakened to

E |Yn|γ (1) ≤ K < ∞ for some γ > 2 and K > 0 and all n ≥ 1, (36)

with a corresponding restriction on ν in the conclusion (35). Kirch (2003) has carried out the needed
analysis to verify this. (Also see Theorem D.1 in the Appendix of Kirch (2006).) Her calculations
show that when (v) is replaced by (36) and (iv) by

1
n

n∑
i=1

Y 2
n (i) = σ2 + OP

(
n−2s

)
,

where s = min
(

γ−2
2γ , 1

4

)
, then (35) is valid for all 0 ≤ ν < s. This result could also be derived with

some difficulty from the general weighted approximation to continuous time martingales given in
Theorem 1 of Haeusler and Mason (1999).

Einmahl and Mason (1992) obtained the approximation (24) stated in Theorem 1 and those in
Shorack (1991) as special cases of their approximation, as well as weighted approximations for a
number of other interesting examples. Recently Kirch and Steinebach (2006) and Kirch (2006) have
used the Einmahl and Mason (1992) weighted approximation to derive the limiting distribution of
certain permutation tests for a change point.

Some Special Cases

1. Set

Yn (i) = n

{
Gn

(
i

n

)
−Gn

(
i− 1

n

)}
− 1, i = 1, . . . , n.

This choice yields the weighted approximation (24) to the uniform empirical process given in The-
orem 1.

2. Set
Yn (i) = 1− nξi

ξ1 + · · ·+ ξn
, i = 1, . . . , n,
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where ξ1, ξ2, . . . are i.i.d. exponential random variables with mean 1. This choice yields a weighted
approximation to the uniform quantile process βn as defined in (30).

3. Let cn(1), . . . , cn(n), n ≥ 1, be a triangular array of constants satisfying

n∑
i=1

cn(i) = 0,
n∑

i=1

c2
n(i)/n = 1 and

n∑
i=1

c4
n(i)/n = O(1).

Consider the finite sampling processes

Πn(t) =
∑
i≤tn

cn(Ai), 0 ≤ t ≤ 1,

where (A1, . . . , An) is a random permutation of (1, . . . , n) taken with probability 1/n!. We get that
for 0 ≤ ν < 1

4 and d > 0

sup
d/n≤t≤1−d/n

|Π̃n(t)− B̃n(t)|
(t(1− t))1/2−ν

= Op(n−ν).

The same result holds for the so-called weighted empirical process of Koul (1970):

αc,n(t) =
n∑

i=1

cn(i)1{Ui ≤ t}, 0 ≤ t ≤ 1.

Shorack (1991) first proved these results by means of the Skorokhod embedding for martingales.
This was also the basic tool that Einmahl and Mason (1992) used to obtain their general approxi-
mation to exchangeable processes. Replacing the cn(i), by random exchangeable weights Wi,n−1/n,
one readily derives weighted approximations to the weighted bootstrap empirical process of Mason
and Newton (1992). See the discussion of the weighted approximation to the general weighted
bootstrapped empirical process below.

Weighted Approximations to the Bootstrapped Empirical Process

Weighted Approximations to the Nonparametric Bootstrapped Empirical Process

From results in S. Csörgő and Mason (1989) one can derive the following weighted approximation:

On the same probability space there exist a sequence of i.i.d. F random variables X1, X2, . . . , a
triangular array

{(M1,n, . . . ,Mn,n) : n ≥ 1}

of Multinomial
(
n; 1

n , . . . , 1
n

)
random vectors and a sequence of Brownian bridges B1, B2, . . . , where

the (M1,n. . . . ,Mn,n) , n ≥ 1, and B1, B2, . . . , are independent of X1, X2, . . . , such that for all
0 ≤ ν < 1/4 and τ > 0

sup
τ/n≤F (x)≤1−τ/n

|αM,n(x)−Bn(F (x))|
(F (x) (1− F (x)))1/2−ν

= Op(n−ν),

where
αM,n(x) =

√
n {FM,n(x)− Fn (x)} ,

Fn (x) = n−1
n∑

i=1

1{Xi ≤ x}, −∞ < x < ∞,
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and

FM,n (x) = n−1
n∑

i=1

Mi,n1{Xi ≤ x}, −∞ < x < ∞.

Such a weighted approximation to the bootstrapped empirical process has proved useful in estab-
lishing the weak consistency of nonparametric bootstrapped functions of the empirical process. See
S. Csörgő and Mason (1989) for details and many examples.

A Weighted Approximation to the General Weighted Bootstrapped Empirical Process

The results of Einmahl and Mason (1992) described above yield the following weighted approxi-
mation to the general weighted bootstrapped empirical process introduced by Mason and Newton
(1992). It includes as a special case the S. Csörgő and Mason (1989) result just cited:

Assume that
{(W1,n, . . . ,Wn,n) : n ≥ 1}

is a triangular array of exchangeable random variables satisfying

n∑
i=1

Wi,n = 1,Wi,n ≥ 0, E (nW1,n − 1)4 = O(1),

1
n

n∑
i=1

(nWi,n − 1)2 = σ2 + OP

(
n−1/2

)
, for some σ2 > 0,

and
lim
ε↘0

lim inf
n→∞

P {nW1,n > ε} = 1.

Then on the same probability space there exist a sequence of i.i.d. F random variables X1, X2, . . . ,
a triangular array

{(W1,n. . . . ,Wn,n) : n ≥ 1}

as above and a sequence of Brownian bridges B1, B2, . . . , where the (W1,n, . . . ,Wn,n) , n ≥ 1, and
B1, B2, . . . , are independent of X1, X2, . . . , such that for all 0 ≤ ν < 1/4 and τ > 0

sup
τ/n≤F (x)≤1−τ/n

|αW,n(x)− σBn(F (x))|
(F (x) (1− F (x)))1/2−ν

= Op(n−ν),

where
αW,n(x) =

√
n {FW,n(x)− Fn (x)} , −∞ < x < ∞,

with

Fn (x) = n−1
n∑

i=1

1{Xi ≤ x}, −∞ < x < ∞,

and

FW,n (x) =
n∑

i=1

Wi,n1{Xi ≤ x}, −∞ < x < ∞.

A Weighted Approximation to a Sequence of Continuous Time Martingales

Some Technicalities
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Fix any 0 < t̄ ≤ ∞. For every integer n ≥ 1, let

Mn = (Mn(t))0≤t<t̄

be a sequence of mean zero martingales with respect to a filtration

Fn = (Fn(t))0≤t<t̄,

and satisfying Mn(0) = 0.

Assume EM2
n(t) < ∞ for all n ≥ 1 and 0 ≤ t < t̄. Also assume among other conditions, which are

too technical to state here, that the predictable quadratic variation < Mn > of Mn converges in a
certain way (see Haeusler and Mason (1999) for details) to a function

D : [0, t̄) → [0,∞)

which is continuous, non-decreasing and satisfies

D(0) = 0, lim
t↑t̄

D(t) = ∞.

Under the above assumptions, Haeusler and Mason (1999) obtained the following:

Theorem 6. On a rich enough probability space there exists a sequence of versions

(M̃n)n≥1 of (Mn)n≥1, i.e. M̃n =d Mn for each n,

and a standard Wiener process W such that for all 0 < ν < β,

sup
t: 1

n−1
≤D(t)≤n−1

|M̃n(t)−W (D(t))|
D(t)1/2−ν(1 + D(t))2ν

= Op(n−ν).

The constant β > 0 depends on a number of technical assumptions.

This result yields the Einmahl and Mason (1992) theorem as a special case. In a related paper,
Haeusler, Mason and Turova (2000) used these ideas to construct a weighted approximation to a
serial rank process.

The Empirical Process seen as a Martingale

Set for n ≥ 1,

Mn(t) =
αn(t)
1− t

=
√

n(Gn(t)− t)
1− t

, 0 ≤ t < 1.

Then
Mn = (Mn(t))0≤t<1

is a sequence of mean zero martingales with respect to the filtration

Fn = (Fn(t))0≤t<1,

where for each 0 ≤ t < 1,
Fn(t) = σ(Gn(s), 0 ≤ s ≤ t).
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In this case it turns out that

〈Mn〉(t) =
1
n

n∑
i=1

Di(t), 0 ≤ t < 1,

where for each i ≥ 1 and 0 ≤ t < 1,

Di(t) :=
∫ t

0

1{Ui ≥ s}
(1− s)3

ds

and
D(t) =

t

1− t
, for 0 ≤ t < 1.

Applying Theorem 6 to this setup eventually yields the weighted approximation (24) to the uniform
empirical process as stated in Theorem 1. In fact, Haeusler and Mason (1999) obtain the Cs-Cs-H-M
(1986) approximation via a weighted approximation to the ’randomly’ weighted empirical process

Xn(t) :=
n∑

i=1

wi,n(1{Ui ≤ t} − t), 0 ≤ t ≤ 1. (37)

A special case of their general Theorem 6 yields the following weighted approximation for (37).

Theorem 7. Assume that the weights wi,n, 1 ≤ i ≤ n, satisfy the following two conditions:

n∑
i=1

Ew4
i,n = O(n−1),

n∑
i=1

w2
i,n − 1 = OP (n−1/2).

Then on a rich enough probability space there exists a sequence of probabilistically equivalent
versions (X̃n)n≥1 of (Xn)n≥1 (i.e. X̃ n =d Xn for every n) and a standard Brownian bridge B such
that for all 0 ≤ ν < 1/4

sup
1/n≤t≤1−1/n

|X̃n(t)−B(t)|
(t(1− t))1/2−ν

= Op(n−ν), (38)

and moreover (38) remains true when the supremum is taken over the entire interval (0, 1) in the
case 0 < ν < 1/4.

Shorack (1991) and Einmahl and Mason (1992) established special cases of this result under the
additional but unnecessary assumption that

∑n
i=1 wi,n = 0. Clearly Theorem 7 also gives as a special

case approximation result (24) stated in Theorem 1 by choosing wi,n = 1/
√

n for i = 1, . . . , n.

Some Final Remarks About Probability Spaces

With respect to weighted approximations to the uniform empirical and quantile processes, there
are at least four probability spaces on which they hold for suitable values of ν. First of all on any
probability space on which sit a sequence of i.i.d. Uniform (0, 1) random variables U1, U2, . . . . , it
was shown in M. Csörgő, S. Csörgő, Horváth and Mason (1986) and Mason (1991) that one always
has for any 0 ≤ ν < 1/4,

sup
1/n≤t≤1−1/n

nν |αn (t)− βn (t)|
(t(1− t))1/2−ν

= OP (1) . (39)
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However there are at least four methods to enlarge the space to include a sequence of Brownian
bridges B1, B2, . . . , such that for suitable ν1 ≥ 0,

sup
1/n≤t≤1−1/n

nν1 |αn (t)−Bn (t)|
(t(1− t))1/2−ν1

= OP (1) (40)

and for suitable ν2 ≥ 0,

sup
1/n≤t≤1−1/n

nν2 |βn (t)−Bn (t)|
(t(1− t))1/2−ν2

= OP (1) . (41)

Method 1. M. Csörgő, S. Csörgő, Horváth and Mason (1986) used the KMT (1975, 1976) strong
approximation to the partial sum process to contruct a probability space so that (41) is valid for
all 0 ≤ ν2 < 1/2 and then inferred that (40) holds on this space for all 0 ≤ ν1 < 1/4 via (39). In
the process they proved that on their probability space the analogs to the inequalities in Theorem
2 held with αn replaced by βn.

Method 2. Mason and van Zwet (1987) showed that on the probability space on which the KMT
(1975) Brownian bridge approximation to uniform empirical process (22) holds that (40) is valid
for all 0 ≤ ν1 < 1/2 and then inferred that (41) holds on this space for all 0 ≤ ν2 < 1/4 via (39).

Method 3. M. Csörgő and Horváth (1986) and Mason (1991) used the Skorokhod embedding to
the partial sum process to construct a probability space so that (41) is valid for all 0 ≤ ν2 < 1/2
and then inferred that (40) holds on this space for all 0 ≤ ν1 < 1/4 via (39).

Method 4. Einmahl and Mason (1992) and Haeusler and Mason (1999) constructed a probability
space using the Skorokhod embedding for martingales so that (40) is valid for all 0 ≤ ν1 < 1/4 and
then inferred that (41) holds on this space for all 0 ≤ ν2 < 1/4 via (39).
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Csörgő, Sándor; Haeusler, Erich; Mason, David M. The asymptotic distribution of extreme sums.
Ann. Probab. 19 (1991), no. 2, 783–811.

29



Csörgő, Sándor; Horváth, Lajos; Mason, David M. What portion of the sample makes a partial
sum asymptotically stable or normal? Probab. Theory Relat. Fields 72 (1986), no. 1, 1–16.
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Csörgő, Sándor; Megyesi, Zoltán. Merging to semistable laws. Teoriya veroyatnostĕı i ee prime-
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Hájek, Jaroslav; Šidák, Zbyněk. Theory of rank tests. Academic Press, New York-London;
Academia Publishing House of the Czechoslovak Academy of Sciences, Prague 1967

Kirch, Claudia. Permutationsprinzipien in der Changepoint Analyse. Diploma thesis Philipps–
Universität Marburg, 2003.

Kirch, Claudia. Resampling Methods for the Change Analysis of Dependent Data. Dissertation.
Universität zur Köln, 2006.
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