Cointegration with infinite variance noise

Keith Knight

Department of Statistics University of Toronto

Joint work with Mahinda Samarakoon

Research Council of Canada. Research supported by the Natural Sciences and Engineering

Outline

- 1. Introduction
- Heavy tails
- Cointegration
- 2. Asymptotics
- Convergence to stable laws and processes
- Asymptotics for M-estimators under cointegration
- Operator stable distributions
- 3. Final commments

1. INTRODUCTION

Time series analysis with heavy tails

- Mandelbrot (1963, 1967) and Fama (1965) observed that possibly infinite variance distributions of stock returns are often heavy tailed with
- Since that time, there has been extensive work on examining the plausibility of the infinite variance model.
- Philosophical/modeling question: Are variances infinite or finite with stochastic heteroscedasticity?

- A partial list of research in this area includes:
- Stationary time series: Davis & Resnick (1995, 1996), Davis, Knight & Liu (1992), Anderson & Meerschaert (1997).
- Unit root testing: Chan & Tran (1989), Knight (1989), (2001), Ahn, Fotopoulos & He (2001), Samarakoon & Knight (2006). Phillips (1990), Rachev, Mittnik & Kim (1998), Hasan
- Cointegration testing: Caner (1998), Paulauskas & Rachev
- Applications: Koedijk and Kool (1992), Falk and Wang Teyssière (2005). (2003), Charemza, Hristova & Burridge (2005), Kirman and

- Classical estimation procedures (typically based on the carefully). assumption of normally distributed innovations) perform reasonably well under non-normal noise conditions (when used
- For integrated and cointegrated processes, least squares convergence rates are equal for finite and infinite variance
- But we can improve on least squares, often substantially.
- Isolated large shocks to a system provide potentially a lot of information on the system dynamics.
- Potentially faster convergence rates.

Example: AR(1) process with infinite variance errors

- Define $X_t = \phi X_{t-1} + \varepsilon_t$.
- Estimate ϕ by regressing X_t on X_{t-1} .
- If standard asymptotics carry over, we should be able to estimate ϕ so that

$$\widehat{\phi}_n - \phi = O_p \left\{ \left(\sum_{t=2}^n X_{t-1}^2 \right)^{-1/2} \right\}$$

- Thus we should have faster convergence rates for infinite case variance $\{\varepsilon_t\}$ since $\sum X_{t-1}^2$ is increasing at a faster rate in this
- But ... least squares estimation does not generally produce the fastest possible rate of convergence.

What is cointegration?

- A univariate stochastic process $\{X_t\}$ is **integrated** if it is stationary. non-stationary but its first differences $\nabla X_t = X_t - X_{t-1}$ are
- If $\{X_t\}$ and $\{Y_t\}$ are both integrated then $\{(X_t, Y_t)\}$ are **cointegrated** if $\{X_t + aY_t\}$ is stationary for some a.
- If $\{X_t\}$ is a vector process whose elements are all for some a (called a cointegration vector). non-stationary then it is cointegrated if $\{a^{\top}X_t\}$ is stationary
- Economic interpretation: individual variables behave like random walks but are collectively in equilibrium.

Testing for cointegration: Two basic approaches

- Find an estimator \hat{a} of a (for example, using regression) and test if $\{\widehat{\boldsymbol{a}}^{\top}\boldsymbol{X}_t\}$ is stationary.
- For example, use a Dickey-Fuller test (or other unit root test) on $\{\widehat{a}^{\top}X_t\}$.
- Assume a parametric model (for example, VAR) for $\{X_t\}$ and test for cointegration within that model.

Assume a VAR(k) model for $\{X_t\}$; we will write this in its error correction form

$$\nabla X_t = \prod X_{t-k} + \Phi_1 \nabla X_{t-1} + \dots + \Phi_{k-1} X_{t-k+1} + \varepsilon_t.$$

- We will assume that the components of $\{\varepsilon_t\}$ have infinite variance, either
- in the domain of attraction of an operator stable law. in the domain of attraction of a multivariate stable law, or
- If $\{\nabla X_t\}$ is stationary,
- $\Pi = 0$ implies that $\{X_t\}$ is integrated but not cointegrated;
- II has full rank implies that $\{X_t\}$ is stationary;
- $\Pi \neq 0$ but less than full rank implies that $\{X_t\}$ is cointegrated.

• Granger representation of $\{X_t\}$:

$$X_t = X_0 + A \{B^{\top}(I - \Phi_1 - \dots - \Phi_{k-1})A\}^{-1} B^{\top} \sum_{u=1}^{t} \varepsilon_t + \zeta_t$$

where

- $-\{\zeta_t\}$ is stationary;
- $-B^{\top}\Pi = \Pi A = 0$ for maximal rank matrices A and B.
- $\{X_t\}$ looks like a random walk in r = rank(A) = rank(B)dimensions
- II full rank: A = B = 0, $X_t = X_0 + \zeta_t$.
- $\Pi = 0$: A = B = I,

$$X_t = X_0 + (I - \Phi_1 - \dots - \Phi_{k-1})^{-1} \sum_{u=1}^t \varepsilon_t + \zeta_t$$

Define the cointegration space of $\{X_t\}$:

$$\mathcal{C} = \{ a : \{ a^{\top} X_t \} \text{ is stationary} \}$$

 \mathcal{C} is simply the row space of Π .

- Cointegration rank is determined essentially by finding good full rank) estimator of II. lower rank approximations to an unconstrained (and typically
- Start by testing $H_0: \Pi = 0$.
- Finite variance errors: look at canonical correlations between $\{\nabla X_t\}$ and $\{X_{t-k}\}$, adjusted for $X_{t-1}, \dots, X_{t-k+1}$.
- Johansen (1988, 1991, ...) develops asymptotic distribution theory.

- We will consider component-by-component M-estimators of the parameters in the model.
- Define Y_t to be an arbitrary component of ∇X_t .
- Our M-estimators minimize

$$\sum_{t=k+1}^{n} \rho(Y_t - X_{t-k}^{\top} \pi - \nabla X_{t-1}^{\top} \phi_1 - \dots - \nabla X_{t-k+1}^{\top} \phi_{k-1})$$

increasing slower than x^2 over some appropriate space where ρ is a convex function

These estimators can be "stacked" to give estimators of Π , $\Phi_1, \cdots, \Phi_{k-1}.$

2. ASYMPTOTICS

Stable laws and processes

- Assume that the innovations $\{\varepsilon_t\}$ to lie in the domain of attraction of a multivariate stable law with index $\alpha \in (0, 2)$.
- This means that

$$P\left(\|\varepsilon_t\| > x\right) = x^{-\alpha}L(x)$$

where L is a slowly varying function, and for unit vectors a,

$$\lim_{v \to \infty} \frac{P(\|\varepsilon_t\| > x, \varepsilon_t / \|\varepsilon_t\| \in A)}{P(\|\varepsilon_t\| > x)} = \nu(A)$$

for some measure A.

Note that this assumption is quite restrictive — it implies the same tail index in every direction

• Under these assumptions, we have

$$a_n^{-1} \sum_{t=1}^n (\boldsymbol{\varepsilon}_t - \boldsymbol{b}_n) \stackrel{d}{\longrightarrow} \boldsymbol{S}_{\alpha}$$

where S_{α} is an α -stable random vector.

- $a_n = n^{1/\alpha} L^*(n)$ where L^* is another slowly varying function.
- We will assume in this talk that $b_n = 0$ (i.e. no drift).
- When $\alpha > 1$, this means $E(\varepsilon_t) = \mathbf{0}$.
- When $\alpha < 1$, we can always set $\boldsymbol{b}_n = \boldsymbol{0}$.

Define the two partial sum processes

$$S_n(u) = a_n^{-1} \sum_{t=1}^{\lfloor nu \rfloor} \varepsilon_t$$

and

$$W_n(u) = n^{-1/2} \sum_{t=1}^{\lfloor nu \rfloor} \phi(\varepsilon_t).$$

where $E[\phi(\varepsilon_t)] = 0$ and $E[\phi^2(\varepsilon_t)] < \infty$.

- S_n and W_n converge weakly to independent processes (Resnick and Greenwood, 1979):
- $S_n \xrightarrow{d} S_{\alpha}$, a stable process;
- $-W_n \xrightarrow{d} W$, a Brownian motion.

Asymptotics for M-estimation

- Asymptotic distribution theory for estimators of II combines the techniques used in
- Davis et al. (1992) for stationary AR processes,
- Knight (1989, 1991) for the unit root AR(1) process, and
- Samarakoon & Knight (2006) for general unit root tests.
- The asymptotics depend on whether we do unconstrained minimization or minimize over $\pi \in \mathcal{C}^{\perp}$.
- unconstrained: point process (i.e. non-standard) asymptotics
- constrained: more classical asymptotics involving a stable process and a Brownian motion.

What are the regularity conditions?

- $\{\varepsilon_t\}$ are in the domain of attraction of a stable law with index $\alpha \in (0,2)$ with $\boldsymbol{b}_n = 0$;
- ρ is a convex function with derivatives $\psi = \rho'$ and $\psi' = \rho''$ satisfying

$$|\psi(x+y) - \psi(x)| \le K_1 |y|^{\delta_1}$$
 and $|\psi'(x+y) - \psi'(x)| \le K_2 |y|^{\delta_2}$

positive constants; where $\delta_1 > \max\{2(\alpha - 1)/\alpha, 0\}, \, \delta_2 > 0$, and K_1, K_2 are

 $E[\psi(\varepsilon_{ti})] = 0, E[\psi^2(\varepsilon_{ti})] < \infty, \text{ and } 0 < E[\psi'(\varepsilon_{ti})] < \infty \text{ where}$ $oldsymbol{arepsilon}_t = (arepsilon_{t1}, \cdots, arepsilon_{tp})^{ op}.$

Results: Focus on estimation of Π with rows constrained to \mathcal{C}^{\perp} .

• If we minimize over $\pi \in \mathcal{C}^{\perp}$ then

$$\xrightarrow{d} \left(\int_0^1 A^\top \mathbf{S}_{\alpha}(s) \mathbf{S}_{\alpha}^\top(s) A \, ds \right)^{-1} \left(\int_0^1 A^\top \mathbf{S}_{\alpha}(s) \, d\mathbf{W}^\top(s) \right) \Gamma^{-1}$$

where

columns of A are an orthonormal basis for \mathcal{C}^{\perp} ;

W is a zero-mean Gaussian process with

$$E[\boldsymbol{W}(s_1)\boldsymbol{W}^{\top}(s_2)] = \min(s_1, s_2)\Sigma, \ \Sigma = \left(\operatorname{Cov}[\psi(\varepsilon_{ti}), \psi(\varepsilon_{tj})]\right);$$

 $-\Gamma = \operatorname{diag}(E[\psi'(\varepsilon_{t1})], \cdots, E[\psi'(\varepsilon_{tp})]).$

Faster convergence than LS: $O_p(n^{-1/2}a_n^{-1})$ vs $O_p(n^{-1})$.

Given $\widehat{\Gamma}_n$ and $\widehat{\Sigma}_n$ consistent estimators of Γ and Σ then

$$\mathcal{T}_n = \Upsilon_n^{ op} \left(\widehat{\Pi}_n A \right)^{ op} \left(\widehat{\Gamma}_n \widehat{\Sigma}_n^{-1} \widehat{\Gamma}_n \right) \left(\widehat{\Pi}_n A \right) \Upsilon_n \stackrel{d}{\longrightarrow} \mathcal{W}_r(p, I),$$

a standard Wishart distribution with $r = \dim(\mathcal{C}^{\perp})$ where

$$\Upsilon_n \Upsilon_n^{ op} = A^{ op} \left(\sum_{t=k+1}^n X_{t-k} X_{t-k}^{ op} \right) A.$$

- To test $H_0: \mathcal{C} = \mathcal{C}_0$, use test statistics based on the eigenvalues of \mathcal{I}_n whose asymptotic distribution theory is relatively straightforward
- In contrast, the "classical" (i.e. finite variance) asymptotic theory is much more complicated.

- No uniformly optimal test statistic based on the eigenvalues of I_n exists
- Two natural possibilities: maximum eigenvalue and trace.
- Maximum eigenvalue statistic: suggests a new subspace to be added to C_0 .
- Limiting distribution can be evaluated analytically, albeit painfully (Muirhead, 1982) or via simulation.
- Trace statistic: more of an omnibus test.
- χ^2 limiting distribution.

Note: This latter asymptotic result does *not* depend on α .

result still holds? **Question:** Can we weaken the assumption on $\{\varepsilon_t\}$ so that this

- We want to allow projections of ε_t to have different tail indices.
- Replace normalizing constants $\{a_n\}$ by normalizing matrices $\{\Delta_n\}.$

Solution: Consider domains of attraction of operator stable laws.

 $Y_i \sim \text{Cauchy}.$ **Example:** $\{X_i\}$, $\{Y_i\}$ i.i.d. sequences with $E(X_i) = 0$, $E(X_i^2) = 1$,

• Define

$$\mathbf{U}_i = \left(egin{array}{c} X_i + Y_i \ X_i - Y_i \end{array}
ight).$$

Elements of \mathbf{U}_i are in the domain of attraction of a Cauchy distribution and

$$rac{1}{n}\sum_{i=1}^n \mathbf{U}_i \stackrel{d}{\longrightarrow} \left(egin{array}{c} Y_0 \ -Y_0 \end{array}
ight)$$

where $Y_0 \sim \text{Cauchy}$.

The limiting distribution is concentrated on a one-dimensional subspace of R^2

- We get a more interesting limiting distribution by normalizing the partial sum by matrices.
- Define

$$\Delta_n = \left(\begin{array}{cc} n^{1/2} & n \\ n^{1/2} & -n \end{array} \right)$$

Then

$$\Delta_n^{-1} \sum_{i=1}^n \mathbf{U}_i \stackrel{d}{\longrightarrow} \left(egin{array}{c} X_0 \ Y_0 \end{array}
ight)$$

where X_0 and Y_0 are independent, $X_0 \sim \mathcal{N}(0,1)$ and $Y_0 \sim \text{Cauchy}.$

What are operator stable laws?

- Limits of partial sums are operator stable laws P_E , where the index E is a matrix
- If $\mathbf{U}_1, \dots, \mathbf{U}_n$ are i.i.d. P_E then for some \boldsymbol{b}_n ,

$$n^{-E}\sum_{i=1}^{N}\mathbf{U}_i-oldsymbol{b}_n\sim P_E$$

where

$$n^{-E} = \exp[-E \ln(n)] = \sum_{k=0}^{\infty} \frac{(-1)^k \ln^k(n) E^k}{k!}.$$

- Canonical form of the characteristic function was given by Sharpe (1969).
- Applications: Meerschaert & Scheffler (2000, 2001).

- The matrix E has eigenvalues $\lambda_1, \dots, \lambda_p$ with $\operatorname{Re}(\lambda_j) \geq 1/2$.
- $\operatorname{Re}(\lambda_j)$ $(j=1,\dots,p)$ play the role of $1/\alpha$:
- If $\operatorname{Re}(\lambda_j) > 1/2$ for all j then P_E is an infinite variance operator stable law.
- $\operatorname{Re}(\lambda_j) = 1/2$ corresponds to a Gaussian component that is independent of the infinite variance components.
- P_E must not be concentrated on a lower dimensional hyperplane
- A lower dimensional projection of an operator stable distribution is not necessarily operator stable
- But ... one-dimensional projections have potentially different tail indices.

An i.i.d. sequence $\{\mathbf{U}_i\}$ is in the domain of attraction of P_E if there exists a sequence of matrices $\{\Delta_n\}$ and vectors $\{\boldsymbol{b}_n\}$ such

$$\Delta_n^{-1} \sum_{i=1}^n \mathbf{U}_i - \boldsymbol{b}_n \stackrel{d}{\longrightarrow} P_E.$$

- $\{\Delta_n\}$ is regularly varying in the following sense:

$$\lim_{n \to \infty} \Delta_{\lfloor sn \rfloor} \Delta_n^{-1} = s^E \quad \text{for each } s > 0.$$

If there's no Gaussian component then for any set D bounded away from 0, we have

$$\lim_{n \to \infty} nP(\Delta_n^{-1} \mathbf{U}_i \in D) = \phi(D)$$

Example: Use Δ_n from earlier example:

$$\Delta_{\lfloor sn\rfloor} \Delta_n^{-1} = \frac{1}{2} \begin{pmatrix} s^{1/2} + s & s^{1/2} - s \\ s^{1/2} - s & s^{1/2} + s \end{pmatrix}$$

The eigenvalues of $\Delta_{\lfloor sn\rfloor}\Delta_n^{-1}$ are $s^{1/2}$ and s and the eigenvectors are $(1,\pm 1)^{\top}$ so that

$$\Delta_{\lfloor sn\rfloor}\Delta_n^{-1}=s^E$$

where

$$E = \left(\begin{array}{cc} 3/4 & -1/4 \\ -1/4 & 3/4 \end{array} \right)$$

has eigenvalues 1/2 and 1.

Application to cointegration

Recall Granger representation of $\{X_t\}$:

$$\boldsymbol{X}_t = \boldsymbol{X}_0 + A \left\{ \boldsymbol{B}^\top (\boldsymbol{I} - \boldsymbol{\Phi}_1 - \dots - \boldsymbol{\Phi}_{k-1}) \boldsymbol{A} \right\}^{-1} \boldsymbol{B}^\top \sum_{t}^{t} \boldsymbol{\varepsilon}_t + \boldsymbol{\zeta}_t$$

with $\{\zeta_t\}$ stationary.

Assume that $\{B^{\top} \boldsymbol{\varepsilon}_t\}$ lie in the domain of attraction of an operator stable distribution:

$$\Lambda_n^{-1} \sum_{t=1}^n B^{ op} oldsymbol{arepsilon}_t \stackrel{d}{\longrightarrow} oldsymbol{V} \sim P_E$$

for some E and some sequence of matrices $\{\Lambda_n\}$.

Includes earlier assumption on $\{\varepsilon_t\}$ as a special case.

- Look at asymptotic behaviour of $\{X_t\}$ on \mathcal{C}^{\perp} .
- Redefine S_n as follows:

$$egin{array}{lcl} oldsymbol{S}_n(u) &=& \Delta_n^{-1} A^{ op} oldsymbol{X}_{\lfloor nu \rfloor} \ &=& \Lambda_n^{-1} \sum_{t=1}^{\lfloor nu \rfloor} B^{ op} oldsymbol{arepsilon}_t + o_p(1) \end{array}$$

where

$$\Delta_n^{-1} = \Lambda_n^{-1} \left\{ B^{\mathsf{T}} (I - \Phi_1 - \dots - \Phi_{k-1}) A \right\}$$

 $S_n \xrightarrow{f-d} S_E$, a operator stable Lévy process.

Under the operator stable assumption plus regularity conditions on ρ , we have

$$\stackrel{-d}{\longrightarrow} \left(\int_0^1 \mathbf{S}_E(s) \mathbf{S}_E^{\top}(s) \, ds \right)^{-1} \left(\int_0^1 \mathbf{S}_E(s) \, d\mathbf{W}^{\top}(s) \right) \Gamma^{-1}$$

where W is the same Gaussian process as before

We also have (as before)

$$\mathcal{T}_n = \Upsilon_n^{\top} \left(\widehat{\Pi}_n A \right)^{\top} \left(\widehat{\Gamma}_n \widehat{\Sigma}_n^{-1} \widehat{\Gamma}_n \right) \left(\widehat{\Pi}_n A \right) \Upsilon_n \stackrel{d}{\longrightarrow} \mathcal{W}_r(p, I).$$

Limiting distribution is independent of E, $\{\Delta_n\}$ — we don't need to estimate tail indices!

3. FINAL COMMENTS

- The results can be extended to allow drift and other I(0) terms (including an intercept) in the model.
- Need only correct for estimation of these additional parameters.
- Asymptotic theory for estimators of $\Phi_1, \dots, \Phi_{k-1}$ is non-standard — point process asymptotics.
- Open question: Is a "domain of attraction" assumption necessary?
- Does $\mathcal{T}_n \stackrel{d}{\longrightarrow} \mathcal{W}_r(p,I)$ if $\boldsymbol{a}^{\top} \boldsymbol{\varepsilon}_t$ has infinite variance for all non-zero a?
- Extensions to domains of attraction with a Normal component also are possible.