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1. INTRODUCTION

Time series analysis with heavy tails

e Mandelbrot (1963, 1967) and Fama (1965) observed that
distributions of stock returns are often heavy tailed with

possibly infinite variance.

e Since that time, there has been extensive work on examining

the plausibility of the infinite variance model.

e Philosophical /modeling question: Are variances infinite or

finite with stochastic heteroscedasticity?
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e A partial list of research in this area includes:

— Stationary time series: Davis & Resnick (1995, 1996), Davis,
Knight & Liu (1992), Anderson & Meerschaert (1997).

Unit root testing: Chan & Tran (1989), Knight (1989),
Phillips (1990), Rachev, Mittnik & Kim (1998), Hasan
(2001), Ahn, Fotopoulos & He (2001), Samarakoon &

Knight (2006).
Cointegration testing: Caner (1998), Paulauskas & Rachev
(1998).

Applications: Koedijk and Kool (1992), Falk and Wang
(2003), Charemza, Hristova & Burridge (2005), Kirman and
Teyssiere (2005).




e Classical estimation procedures (typically based on the

assumption of normally distributed innovations) perform
reasonably well under non-normal noise conditions (when used

carefully).

— For integrated and cointegrated processes, least squares
convergence rates are equal for finite and infinite variance
noise.

e But .... we can improve on least squares, often substantially.

— Isolated large shocks to a system provide potentially a lot of

information on the system dynamics.

— Potentially faster convergence rates.




Example: AR(1) process with infinite variance errors
Define ;vmxw = %;XMIH + &¢.
Estimate ¢ by regressing X; on X;_1.

If standard asymptotics carry over, we should be able to

estimate ¢ so that
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Thus we should have faster convergence rates for infinite
variance {e;} since Y X2 | is increasing at a faster rate in this

case.

But ... least squares estimation does not generally produce the

fastest possible rate of convergence.




What is cointegration?

e A univariate stochastic process {X;} is integrated if it is
non-stationary but its first differences V.X; = X; — X;_1 are

stationary.

If {X;} and {Y;} are both integrated then {(X4, Y;)} are
cointegrated if {X; + aY;} is stationary for some a.

If {X .} is a vector process whose elements are all

non-stationary then it is cointegrated if {a ' X} is stationary

for some a (called a cointegration vector).

Economic interpretation: individual variables behave like

random walks but are collectively in equilibrium.




Testing for cointegration: Two basic approaches

e Find an estimator a of a (for example, using regression) and
test if {@' X} is stationary.

— For example, use a Dickey-Fuller test (or other unit root
test) on {@ ' X.}.

e Assume a parametric model (for example, VAR) for {X;} and
test for cointegration within that model.




e Assume a VAR(k) model for { X;}; we will write this in its

error correction form

VX =1IX p+PO,VXy g+ -+ P 1 Xy + &t

e We will assume that the components of {€;} have infinite

variance, either
— in the domain of attraction of a multivariate stable law, or

— in the domain of attraction of an operator stable law.

o If {VX,} is stationary,
— IT = 0 implies that { X} is integrated but not cointegrated;

— II has full rank implies that { X;} is stationary;
— II # 0 but less than full rank implies that { X} is

cointegrated.




e Granger representation of { X }:

t
X, = Xo+A{BT(I—d - —d_1)A} BT & +¢,

u=1
where
— {(,} is stationary;
— B'II = IIA = 0 for maximal rank matrices A and B.

e {X,} looks like a random walk in r = rank(A) = rank(B)

dimensions.
— II full rank: A =B =0, X; = Xo+ (;.
—II1=0. A=B=1,

t
;NNH;NQITC‘IAF|...|AFA|HV|HMQ+@
u=1




e Define the cointegration space of { X }:

C={a:{a'X,} is stationary}

C is simply the row space of II.

e Cointegration rank is determined essentially by finding good
lower rank approximations to an unconstrained (and typically
full rank) estimator of II.

— Start by testing H : II = 0.
e Finite variance errors: look at canonical correlations between
{VX,} and {X;_ 1}, adjusted for X 1, -+, Xy _p11.

— Johansen (1988, 1991, ...) develops asymptotic distribution
theory.




e We will consider component-by-component M-estimators of the

parameters in the model.
e Define Y; to be an arbitrary component of V.X;.

o Our M-estimators minimize

Y V- X VX, ¢ - = VX, 1)

t=k+1

over some appropriate space where p is a convex function

increasing slower than x°.

e These estimators can be “stacked” to give estimators of II,




2. ASYMPTOTICS

Stable laws and processes

e Assume that the innovations {e;} to lie in the domain of

attraction of a multivariate stable law with index a € (0, 2).

e This means that
P(llet]] > z) =2~ “L(x)

where L is a slowly varying function, and for unit vectors a,

i Pl >z eledled) o
e Pl > 2)

for some measure A.

e Note that this assumption is quite restrictive — it implies the

same tail index in every direction.




e Under these assumptions, we have

at (et —by) - S,
t=1

where S, is an a-stable random vector.
e a, = n'/*L*(n) where L* is another slowly varying function.

e We will assume in this talk that b, = 0 (i.e. no drift).
— When « > 1, this means E(e;) = 0.

— When a < 1, we can always set b,, = 0.




e Define the two partial sum processes

[nu)
Sn(u) =a," ) &
t=1

[
Wi(u) =n""2 3 " ¢(ey).
t=1

where E[¢(e;)] = 0 and E[¢?(e;)] < oo.

e S, and W, converge weakly to independent processes (Resnick

and Greenwood, 1979):

- S, 4, S ., a stable process;

d : :
— W,, — W, a Brownian motion.




Asymptotics for M-estimation
e Asymptotic distribution theory for estimators of II combines
the techniques used in
— Davis et al. (1992) for stationary AR processes,
— Knight (1989, 1991) for the unit root AR(1) process, and
— Samarakoon & Knight (2006) for general unit root tests.

e The asymptotics depend on whether we do unconstrained

minimization or minimize over ™ € CL.

— unconstrained: point process (i.e. non-standard)

asymptotics.

— constrained: more classical asymptotics involving a stable

process and a Brownian motion.




What are the regularity conditions?

e {&;} are in the domain of attraction of a stable law with index
a € (0,2) with b, = 0;

p is a convex function with derivatives 1) = p’ and ¢’ = p”

satisfying

Pz +y) —y(x)] < Kily|™ and
V(@ +y) —d'(2)] < Kolyl™

where §; > max{2(a — 1)/, 0}, d2 > 0, and K;, K5 are
positive constants;
E[(ey)] = 0, E[¢?(e4)] < 0o, and 0 < E[1)’(e4;)] < oo where

Er = Amwf T umﬁ@vnﬁ.




Results: Focus on estimation of IT with rows constrained to C—+.

e If we minimize over m € Ct+ then

nt2a, ATII]
—1
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where
— columns of A are an orthonormal basis for C+;

— W is a zero-mean Gaussian process with
E[W (s1)W ' (s2)] = min(sy, $2)E, ¥ = AOoi@AmSqum&vww

~ T = diag(E[¢'(en)], - B/ (e1)]).

e Faster convergence than LS: O,(n~Y2a; 1) vs O,(n71).




e (Given Wz and m: consistent estimators of I' and X then

AN AN

T, =717 Amlva A?m%m:v Amio T, -5 Wi (p, I),

a standard Wishart distribution with r = dim(C~) where

T, Y, =AT [ Y X, X/, |A
t=k+1

e To test Hy : C = Cy, use test statistics based on the eigenvalues
of 7,, whose asymptotic distribution theory is relatively

straightforward.

e In contrast, the “classical” (i.e. finite variance) asymptotic

theory is much more complicated.




No uniformly optimal test statistic based on the eigenvalues of
7,, exists.

Two natural possibilities: maximum eigenvalue and trace.

Maximum eigenvalue statistic: suggests a new subspace to be
added to Cy.

— Limiting distribution can be evaluated analytically, albeit
painfully (Muirhead, 1982) or via simulation.

Trace statistic: more of an omnibus test.

— x? limiting distribution.




Note: This latter asymptotic result does not depend on «.

Question: Can we weaken the assumption on {&;} so that this
result still holds?

e We want to allow projections of €; to have different tail indices.

e Replace normalizing constants {a,} by normalizing matrices
{An}.

Solution: Consider domains of attraction of operator stable laws.




Example: {X;}, {Y;} i.i.d. sequences with E(X;) =0, E(
Y, ~ Cauchy.

e Define
Xi+Y
Xi =Y

U, =

e Elements of U, are in the domain of attraction of a Cauchy

distribution and

where Yy ~ Cauchy.

e The limiting distribution is concentrated on a one-dimensional

subspace of R?.




e We get a more interesting limiting distribution by normalizing
the partial sum by matrices.

e Define

Xo
Yo

AL M:U U, -4
1=1

where X and Y are independent, Xq ~ A(0,1) and
Yy ~ Cauchy.




What are operator stable laws?

e Limits of partial sums are operator stable laws Pg, where the

index FE is a matrix.

If U,,---,U,, are i.i.d. Pg then for some b,,,

SINWG@.|®3 Zw@

1=1

Canonical form of the characteristic function was given by
Sharpe (1969).

Applications: Meerschaert & Scheffler (2000, 2001).




e The matrix F has eigenvalues A1, ---, A, with Re(\;) > 1/2.

e Re()\;) (=1, ---,p) play the role of 1/a:

— If Re(\;) > 1/2 for all j then Pg is an infinite variance
operator stable law.

— Re()\;) = 1/2 corresponds to a Gaussian component that is

independent of the infinite variance components.
e Pr must not be concentrated on a lower dimensional
hyperplane.

— A lower dimensional projection of an operator stable

distribution is not necessarily operator stable.

— But ... one-dimensional projections have potentially

different tail indices.




e An i.i.d. sequence {U,} is in the domain of attraction of Pg if
there exists a sequence of matrices {A,,} and vectors {b,,} such
that

AN U b, -5 P
1=1

— {A,} is regularly varying in the following sense:

lim A|gp) Al = s¥  for each s > 0.

n—oo

e If there’s no Gaussian component then for any set D bounded

away from 0, we have

lim nP(A'U; € D) = ¢(D)

n—oo




Example: Use A,, from earlier example:
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e The eigenvalues of A4, A1 are s1/2 and s and the

eigenvectors are (1,£1)" so that

—1 E
DT&& Dz = S

3/4 —1/4
—1/4 3/4

E —

has eigenvalues 1/2 and 1.




Application to cointegration
e Recall Granger representation of { X }:

t
X =Xo+A{BT(I-0 — —®_1)A} B'> e+¢

u=1
with {(,} stationary.

e Assume that {B'e;} lie in the domain of attraction of an

operator stable distribution:

AP BTey <5V~ Py

t=1

for some E and some sequence of matrices {A,,}.

e Includes earlier assumption on {&;} as a special case.




e Look at asymptotic behaviour of {X;} on C+.
e Redefine S,, as follows:

[

ALY BTer+0p(1)

t=1

where

AP =A{B ' (I-® —- —®p_1)A}

n

—d )
e S, /=4 g £, a operator stable Lévy process.




e Under the operator stable assumption plus regularity

conditions on p, we have

n'/2ATATIT

°, A\H SE(s)S1(s)ds

—1

\OH Sp(s) dW T ( vv -1

where W is the same Gaussian process as before.

0

e We also have (as before)
~ T/~ ~ ~
T, = 1T ?i@ A?m%?v ?z\o T, —L W, (p, ).

e Limiting distribution is independent of E, {A,,} — we don’t

need to estimate tail indices!




3. FINAL COMMENTS
e The results can be extended to allow drift and other I(0) terms
(including an intercept) in the model.
— Need only correct for estimation of these additional

parameters.

e Asymptotic theory for estimators of ®;,---, $p_1 is

non-standard — point process asymptotics.

e Open question: Is a “domain of attraction” assumption

necessary?

— Does 7, 9, W (p, I) if a ' e, has infinite variance for all

non-zero a’?!

e Extensions to domains of attraction with a Normal component

also are possible.




