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The Kernel Density Estimator

Let X, X1, X2, . . . , be a sequence of independent and
identically distributed random variables in IR with Lebesgue
density f .

Further let {hn}n≥1 be a sequence of positive constants
such that hn → 0 and nhn → ∞ as n → ∞. The
classical kernel estimator is defined as

fn,K(x) =
1

nhn

n∑
i=1

K

(
Xi − x

hn

)
, for x ∈ IR,

where K is a kernel satisfying K(u) = 0 for |x| > 1/2
and ∫

IR

K(u)du = 1.

2



The L1−norm Distance

Devroye and Györfi have long advocated that the natu-
ral distance to measure the error in estimation between
a density estimator and the density is the L1-distance

||fn,K − f ||1 =

∫
IR

|fn,K − f (x)|dx.

Devroye and Györfi (1984), in their book, Nonparamet-
ric Density Estimation: The L1 View, posed the chal-
lenging problem to find the asymptotic distribution of
the L1 distance

||fn,K − f ||1.
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The L1−consistency

Devroye (1983) had shown that whenever hn → 0 and
nhn → ∞ as n → ∞ then with probability one as
n →∞.

||fn,K − f ||1 → 0.

Later on we shall discuss conditions under which

(nhn)
1/2 E ‖fn,K −f‖1 → m (1, f,K) .

and
(nhn)

1/2 ‖fn,K − f‖1 →p m (1, f,K) ,

where

m (1, f,K) = ‖K‖2 E |Z|
∫

IR

f 1/2 (y) dy,

with Z being a standard normal random variable.
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Central Limit Theorem

In 2001 I applied the Poissonization methods in Beirlant
and Mason (1995) to the special case of the L1-norm of
the kernel density estimator to show that whenever K
is bounded, hn → 0 and

√
nhn →∞ then

ξn(K) :=
√

n{||fn,K−Efn,K||1−E||fn,K−Efn,K||1},

converges in distribution to a normal random variable
with mean zero and variance

σ2(K)/||K||22 =∫ 1

−1

cov
(∣∣∣√1− ρ2(K, K, t)Z1 + ρ(K, K, t)Z2

∣∣∣ , |Z2|
)

dt,

where Z1 and Z2 are independent standard normal ran-
dom variables and

ρ(K, K, t) =

∫ 1

−1 K(u)K(u + t)du

||K||22
.

The proof appeared in the 2001 Eggermont and LaRic-
cia book on penalized maximum likelihood.
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The L1-norm Density Estimator Process

Later Evarist Giné, Andre Zaitsev and I (2003) ex-
tended this result to show that under suitable assump-
tions on a class of kernels K the sequence of processes

{ξn(K) : K ∈ K}n≥1

converges weakly to a mean zero Gaussian process

{ξ(K) : K ∈ K}
with covariance function defined for K1, K2 ∈ K by

σ(K1, K2)

||K1||2||K2||2
:=∫ 1

−1

Cov
(∣∣∣√1− ρ2(K1, K2, t)Z1 + ρ(K1, K2, t)Z2

∣∣∣ , |Z2|
)

dt

and where for t ∈ IR

ρ(K1, K2, t) :=

∫
IR K1(u)K2(u + t)du

||K1||2||K2||2
.

In the process we developed a number of very useful
Poissonization tools.

In this talk I describe two interesting problems that I
have been working on with Wolfgang Polonik and Boris
Levit, whose solution relies heavily on these Poissoniza-
tion methods.
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Part 1: Level Set Estimation

In this part of my talk I discuss work in progress with
Wolfgang Polonik on level set estimation.

Let f be a bounded Lebesgue density on R2. (We con-
sider only the R2-version of the problem for now.) De-
fine the level set

C (c) = {x : f (x) ≥ c} .

Assume that

inf
x∈R2

f (x) < c < sup
x∈R2

f (x) .

Let X1, X2, . . . be i.i.d. with density f and consider
the kernel density estimator of f based on X1, . . . , Xn,
n ≥ 1,

fn (x) =
1

nhn

n∑
i=1

K

(
x−Xi

h
1/2
n

)
, x ∈ R2,

where K is a kernel having support contained in the
closed ball of radius 1/2 centered at zero and is bounded
by a constant κ.

We shall assume that for some 0 ≤ τ < ∞,

(H) nh2
n → τ , as n →∞.
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Random Level Sets

Consider the random level set

Cn (c) = {x : fn (x) ≥ c} .

Our interest is to derive the exact asymptotic distribu-
tion of the Lebesgue measure of the symmetric differ-
ence betweeen Cn(c) and C(c), that is, the quantity

d(Cn(c), C(c) ) := Leb(Cn(c) ∆ C(c))

=

∫
R2
| I{fn(x) ≥ c } − I{ f (x) ≥ c} | dx.
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Convergence of Random Sets

It is well-known that under mild conditions

d(Cn(c), C(c)) →P 0.

Even more is known.

Cadre (2006) derived assumptions under which for some
µ > 0 we have√

n hn d(Cn(c), C(c)) →P µ.
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Asymptotic Normality

Our aim is to show that with the normalizing sequence

an =
(

n
hn

)1
4

and a suitable centering sequence bn we

have

an {d(Cn(c), C(c))− bn } →d N (0, σ2)

for some σ2 > 0. The following heuristics indicate why

an =

(
n

hn

)1/4

is the correct normalizing factor.
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Heuristics

First notice that the boundary of the set Cn(c) can be
expected to fluctuate around a band B around the set

∂C(c) = {x : f (x) = c }.

It is well-known that under certain assumptions we have
ignoring a log term

√
n hn sup

x
|fn(x)− f (x)| = OP (1) as n →∞.

This indicates that under appropriate smoothness as-
sumptions on f the set B will have a ‘width’ of order

OP

(
1√

n hn

)
.

We can cover the band B by

N = O

(
1√

n hn hn

)
= O

(
1√
n h3

n

)
disjoint regions Ri, i = 1, . . . , N, of area hn.
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Approximation

We can approximate d(Cn(c), C(c)) as

d(Cn(c), C(c)) ≈
∫

B

| I{fn(x) ≥ c } − I{ f (x) ≥ c} | dx

≈
N∑

k=1

∫
Ri

| I{fn(x) ≥ c } − I{ f (x) ≥ c} | dx

=:

N∑
k=1

Yn,k

Writing

Yn,k =

∫
Rk

∆n(x) dx

and

∆n(x) = | I{fn(x) ≥ c } − I{ f (x) ≥ c} |,
we see that

Var(Yn,k) =

∫
Rk

∫
Rk

cov(∆n(x), ∆n(y)) dx dy

= O
(
Leb(Rk)

2
)

= O(h2
n).
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Further Heuristics

The O-term turns out to be exact. Further, after a
Poissonization, which will be soon described, due to the
choice of a kernel with a compact support and the fact
that we choose the regions Rk so as not to overlap, the
random variables Yn,k will be m-dependent.

Hence, the variance of

d(Cn(c), C(c))

can be expected to be of the order

N h2
n =

√
hn

n
,

which motivates the normalizing factor an =
(

n
hn

)1
4
.
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Poissonization

First replace fn (x) by its Poissonized version

πn (x) =
1

nhn

Nn∑
i=1

K

(
x−Xi

h
1/2
n

)
,

where Nn is a mean n Poisson random variable inde-
pendent of X1, X2, . . .

Notice that
Eπn (x) = Efn (x) .

Define

Πn (c) =

∫
B

|I {πn (x) ≥ c} − I {Efn (x) ≥ c}| dx.

The idea is to infer a central limit theorem for

d(Cn(c), C(c))

from a central limit theorem for Πn (c) .

The idea works!

After Poissonization, one must then de-Poissonize.
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De-Poissonizatioin

To de-Poissonize we need a version of a result
in Beirlant and M (1995).

LEMMA Let N1,n and N2,nbe independent Poisson
random variables with N1,n being Poisson(nβn) and
N2,n being Poisson(n (1− βn)) where βn ∈ (0, 1).

Denote Nn = N1,n + N2,n and set

Un =
N1,n − nβn√

n
and Vn =

N2,n − n (1− βn)√
n

.

Let {Sn}∞n=1 be a sequence of random variables such
that

(i) for each n ≥ 1 , the random vector (Sn, Un) is inde-
pendent of Vn,

(ii) for some σ2 < ∞, Sn →d σZ, as n →∞,

(iii) βn → 0, as n →∞.

Then, for all x,

Pr {Sn ≤ x | Nn = n} → Pr {σZ ≤ x} .

15



Part 2: Lp-Risk Bounds for
Kernel Density Estimators

Let X,X1, X2, . . . be i.i.d. with density f and consider
the kernel density estimator of f based on X 1, . . . , Xn,
n ≥ 1,

fn (x) =
1

nhn

n∑
i=1

K

(
x−Xi

hn

)
, x ∈ IR,

where hn are positive constants such that

hn → 0 and nhn →∞ as n →∞

and K is an L1 (IR) kernel bounded by some constant
κ > 0 and satisfying∫

IR

ΨK(x)dx < ∞,

with
ΨK(x) = sup

|y|≥|x|
|K(y)|, x ∈ IR.

and

f ∗Kh(z) := h−1

∫
IR

f (x) K

(
z − x

h

)
dx.
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Lp−Risk

Motivated by the work of Ibragimov and Hasminskii
(1990) and earlier, Boris Levit and I are interested in
finding good finite sample and asymptotic bounds for
the Lp risk

E

(∫
|fn (x)− Efn (x)|p dx

)1/p

, p ≥ 1.

One of our essential tools is the following Banach space
moment bound.

Fact (Corollary 1 of Pinelis (1995)) If B is a
separable Banach space with norm ‖·‖, Zi, i ∈ N, are
independent mean zero random vectors taking values in
B and r ≥ 1, then for all n ≥ 1,

E (‖Sn‖r) ≤ 2r−1rr/2er (E‖Sn||)r+2r−1rrE max
1≤i≤n

‖Zi‖r,

where Sn = Z1 + · · · + Zn.
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Application of Bound

We apply this bound to the random functions

Zi (·) =
K
(
· −Xi

hn

)
− EK

(
· −X
hn

)
nhn

, i = 1, . . . , n,

which by the assumptions on K are in Lp (IR) for any
p ≥ 1.

Eventually we get the following finite sample bound

(nhn)
r/2 E ‖fn − Efn‖r

p ≤ Ar

[
rr/2 +

rr

(nhn)
r/2

]
,

which leads to:

Corollary For any p ≥ 1 under suitable conditions on
K and f , for every t > 0 there exists an nt such that
for all n ≥ nt,

E exp
(
t
√

nhnE ‖fn − Efn‖p

)
< ∞.
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Exact Asymptotic Risk

Proposition Under suitable conditions on K and f ,
for p ≥ 1, as n →∞,

(nhn)
p/2 E ‖fn − Efn‖p

p → m (p, f, K) ,

and

(nhn)
p/2 ‖fn − Efn‖p

p →p m (p, f, K) ,

where

m (p, f, K) = ‖K‖p
2 E |Z|p

∫
IR

f p/2 (y) dy,

with Z denoting a standard normal random variable.

Eventually our goal is to obtain asymptotic minimax
results of the form

inf
fn

sup
f∈Σ

Ew

( √
nhn ‖fn − f‖p

‖K‖2

(
E |Z|p

∫
IR f p/2 (y) dy

)1/p
)
→ w (1)

for a general class of functions w, the infimum taken
over all estimators fn of f and the supremum over a
subclass Σ of the Lp densities.

An analoguous result was proved by Guerre and Tsy-
bakov (1998) in a Gaussian regression setting. A step
in this direction is the following result.

19



Exact Asymptotic Risk for General Loss Func-
tions

Corollary Under the conditions of the Proposition for
p ≥ 1, for any loss function w continuous at 1 such that
for some λ > 0 and C > 0

0 ≤ w (x) ≤ C exp (λ |x|) , x ∈ IR,

we have as n →∞,

Ew

( √
nhn ‖fn − Efn‖p

‖K‖2

(
E |Z|p

∫
IR f p/2 (y) dy

)1/p
)
→ w (1) .

Remark To replace ‖fn − Efn‖p by ‖fn − f‖p re-
quires additional smoothness conditions

In order to obtain these exact results we needed the
following two basic Poissonization bounds for random
sums. They were used to show that

V ar
(
(nhn)

p/2 ‖fn − Efn‖p
p

)
→ 0.

In addition, a general Berry-Esseen result of Sweeting
(1977) was essential to obtain the exact rates. It had
been also crucial in Giné, Mason and Zaitsev (2003) to
derive an exact asymptotic expression for the variance
in their L1-norm CLT.
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The following fact is a special case of Lemma
2.1 of Giné, Mason and Zaitsev (2003).
Fact Let X, Xi, i ∈ N be a sequence of i.i.d. real
valued random variables and independent of them let
η be a Poisson random variable with mean n. Let L
be a measurable bounded function equal to zero off of
a compact interval [−L, L], C a measurable set and A
the Lh-neighborhood of C, h > 0. Also set

b(x) = EL
(

x−X

h

)
.

and with p ≥ 1, set

c(x) = E

(∣∣∣∣∣
η∑

i=1

L
(

x−Xi

h

)
− b(x)

∣∣∣∣∣
p)

.

Define the real valued measurable function on Rn

H

(
n∑

i=1

I(xi ∈ A)δxi

)

=

(∫
C

{∣∣∣∣∣
n∑

i=1

L
(

x− xi

h

)
− b(x)

∣∣∣∣∣
p

− c(x)

}
dx

)2

,

Then if γ = P (Xi ∈ A) < 1, we have for some Cγ > 0

EH

(
n∑

i=1

I(Xi ∈ A)δXi

)
≤ CγEH

(
η∑

i=0

I(Xi ∈ A)δXi

)
.
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The next fact is Lemma 2.3 of Giné, Mason
and Zaitsev (2003). It is a Poissonized ver-
sion of Rosenthal’s Inequality.

Fact If, for each n ∈ N , ζ, ζ1, ζ2, . . . , ζn, . . . , are inde-
pendent identically distributed random variables, ζ0 =
0, and η is a Poisson random variable with mean γ > 0
and independent of the variables {ζi}∞i=1, then, for every
p ≥ 2,

E

∣∣∣∣∣
η∑

i=0

ζi − γEζ

∣∣∣∣∣
p

≤
(

15p

log p

)p

max
[(

γEζ2
)p/2

, γE|ζ|p
]
.

Moreover, specializing to ζ ≡ 1, we have for every p ≥
2,

E |η − γ|p ≤
(

15p

log p

)p

max
[
γp/2, γ

]
.
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