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Local empirical process

Kernel Density Estimator

Let X, Xi, i ∈ N, be i.i.d. random variables taking values in (S,S), a measure space. Let

g : S 7→ IRd, 1 ≤ d <∞,

be a measurable function. Assume that g (X) has density fg.

Let K : IRd 7→ IR be a kernel, meaning that∫
IRd

K(x)dx = 1 and 0 <

∫
IRd

K2(x)dx = ||K||22 <∞.

For t ∈ IRd and λ ∈ [a, b], 0 < a ≤ b <∞ and for 0 < h < 1, we define the kernel density estimator

fn(t, λh) =
1

nλh

n∑
i=1

Kλh (t− g (Xi)) ,

where
Kh (·) = h−1K

(
·h−1/d

)
.

The conditions hn > 0, hn → 0 and nhn →∞ make fn(t, λhn) a pointwise consistent estimator of
fg (t) at any continuity point t of fg for any a ≤ λ ≤ b.

Local Empirical Process

We define the local empirical process

un (t, λ) :=
√

n {fn(t, λhn)−Efn(t, λhn)} .

It is easy to prove that, subject to smoothness conditions on f , for each t ∈IRd,√
hnun (t) :=

√
hnun (t, 1) =

√
nhn {fn(t, hn)−Efn(t, hn)}

→d N
(
0, ||K||22f (t)

)
,

whereas for any choice of t1 6= t2 the random variables√
hnun (t1) and

√
hnun (t2)
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are asymptotically independent. This means that
√

hnun cannot converge weakly to a continuous
bounded process on any non-trivial subset of IRd.

A Law of the Logarithm

Let
K =

{
K (t− ·γ) : γ ≥ 1, t ∈ IRd

}
.

Assume that

(F.i) K is a bounded point–wise measurable class.

(F.ii) K is VC for some A ≥ 3 and v ≥ 1.

Also assume that K has support in [−1/2, 1/2]d;
fg is uniformly continuous on IRd;
{hn}n≥1 converges to zero at the rate:

(H.i) hn ↘ 0, nhn ↗∞; (H.ii) nhn/ log (1/hn)→∞;

(H.iii) log(1/hn)/ log log n→∞.

The conditions (H.i), (H.ii) and (H.iii) are sometimes called the Csörgő and Révész (1979) and
Stute (1982) conditions.

For definitions of (F.i) and (F.ii) refer to the Appendix.

Theorem 1 of Mason (2004) implies that a.s.

lim
n→∞

sup
a≤λ≤b

sup
t∈IRd

√
λhn |un (t, λ)|√
2 log (1/hn)

= ||K||2 sup
t∈IRd

√
fg (t). (T)

This is a uniform in bandwidth version of a result of Giné and Guillou (2002).

Empirical Processes

Let X, Xi, i ∈ N, be i.i.d. random variables taking values in (S,S), a measure space. Consider
a class F of bounded functions from S to IR. The empirical process (αn(f))f∈F indexed by F is
defined to be

αn(f) =
n∑

i=1

(f(Xi)−Ef(X1))/
√

n, f ∈ F .

Introduce the class of functions on S,

Fn =

{
z ∈ S → 1√

λ
K

(
t− g (z)

(λhn)1/d

)
: t ∈ IRd, a ≤ λ ≤ b

}
.

We see that

sup
a≤λ≤b

sup
t∈IRd

√
λhn |un (t, λ)|√
2 log (1/hn)

=
supϕ∈Fn

|αn(ϕ)|√
2hn log (1/hn)

.

This places us in the realm of empirical process theory, which enables us to bring two powerful
tools into play.
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Armed with these tools we shall sketch why (T) holds.

TOOL 1: Inequality (Talagrand, (1996))

Let F be a (countable) class of functions f : X → IR and assume that ∃M > 0 : |f | ≤ M, f ∈ F .
Then there exist absolute constants A1, A2 > 0 so that we have for t ≥ 0 :

P{||αn||F ≥ A1(E||αn||F + t)} ≤ 2{exp(−A2t
2/σ2

F ) + exp(−A2

√
nt/M)},

where σ2
F = supf∈F Var(f(X1)).

TOOL 2: A good bound for E||αn||F

Proposition 1 (Moment Bound). (Einmahl and Mason (2000))

Let F be a class of functions f : X → IR and let F be defined by

F (x) = sup
f∈F
|f(x)|, x ∈ X .

Assume that there are constants C, ν ≥ 1 and 0 < σ ≤ β so that

(i) N(ε,F) ≤ Cε−ν , 0 < ε < 1.

(ii) supf∈F Ef2(X1) ≤ σ2.

( iii) EF 2(X1) ≤ β2.

(iv) supf∈F ‖f‖∞ ≤ 1/(4
√

ν)
√

nσ2/ log(C1β/σ),

where C1 = C1/ν ∨ e.

Then we have for an absolute constant A3 > 0

E||αn||F ≤ A3

√
νσ2 log(C1β/σ).

Combining these Two Results

We set F = Fn . Then it follows from Talagrand’s inequality and a blocking argument that with
probability one,

‖αn‖Fn = O
(
σn

√
log log n ∨E‖αn‖Fn

)
,

where σ2
n = O(hn) if fg is bounded.

Our moment inequality implies that

E‖αn‖Fn = O
(√

hn log(1/hn)
)

,

provided that hn ≥ c log n/n. Thus when (H.ii) holds, that is

nhn/ log (1/hn)→∞,

we get that
‖αn‖Fn = O

(√
hn log(1/hn)

)
.
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These tools also lead to the following uniform in bandwidth consistency result for the kernel density
estimator.

Theorem (Einmahl-Mason 2005) Assume that the density fg of g (X) is bounded and let K be
a bounded kernel function. Then we have with probability 1:

lim sup
n→∞

sup
c log n

n
≤h≤1

√
nh‖fn(t, h)−Efn(t, h)‖∞√

log (1/h) ∨ log log n
<∞.

(Here and elsewhere the supremum ‖ · ‖∞ is in the t variable.)
Corollary Let ĥn = Hn(X1, . . . , Xn) be chosen so that with prob. 1:

lim inf
n

ĥn

an
> 0,

where
nan/ log n→∞.

Then we have with probability 1,

‖fn(t, ĥn)−Efn(t, ĥn)‖∞ = O

√ log(1/an) ∨ log log n

nan

 = o(1).

More precise results on the behavior of ‖fn(t, ĥn)− Efn(t, ĥn)‖∞ using certain plug–in–type data
dependent bandwidth selectors are to be found in Deheuvels and Mason (2004).

Local U-Statistics

Frees (1994) made the interesting observation that, under natural, relatively weak hypotheses, if
fg is the density of a function of two or more sample variables, g(X1, . . . , Xm), then the local
U-statistic

(n−m)!
n!hn

∑
Im
n

K

(
t− g(Xi1 , . . . , Xim)

h
1/d
n

)
,

with t ∈ IRd and
Im
n = {i = (i1, . . . , im) : 1 ≤ ij ≤ n, ij 6= ik if j 6= k} ,

estimates fg(t) for each fixed t ∈ IRd, at the rate OP (1/
√

n).
He motivates his study by considering as examples of g, the inter-point distance between spatial
observations, and sums of independent insurance claims (in this last case, fg is a convolution).

Schick and Wefelmeyer (2004) obtain the OP (1/
√

n) rate for the sup norm and the L1 norm in the
case

g(X1, . . . , Xm) = u1(X1) + · · ·+ um(Xm),

where the ui are real functions. They obtain functional central limit theorems when the kernels are
themselves convolutions.

Example 1: Linear combinations. (Frees (1994), Schick and Wefelmeyer (2004))
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Suppose that

g(x1, . . . , xm) =
m∑

i=1

ui(xi), xi ∈ S,

for measurable functions u1, . . . , um from S to IRd such that the random variable ui(X) has a
density fi for each i = 1, . . . ,m. In this case we consider the local U–statistic estimator of the
density of g(X1, . . . , Xm) given by

(n−m)!
n!

∑
i∈Imn

Kλhn

(
t−

m∑
r=1

ur(Xir)

)
.

Example 2: Local inter–point distance processes (Jammalamadaka and Janson (1986), East-
wood and Horváth (1999))

Here we get the local U−statistic

1
λhnn(n− 1)

n∑
i6=j

I
{

Xi −Xj ∈ (λhn)1/d D
}

,

where X1, . . . , Xn are i.i.d. in IRd and D is the unit ball. In this case

m = 2, S = IRd and g (X1, X2) = X1 −X2.

Closely related to this is the kernel density estimator of the density f of the interpoint distribution

F (t) = P {|X1 −X2| ≤ t}

proposed by Frees (1994)
1

λhnn(n− 1)

n∑
i6=j

K

(
t− |Xi −Xj |

λhn

)
.

Example 3: Integral of the Square of the Density

Assuming X has cdf F with density f , a frequently used estimator of

T (F ) :=
∫

IR
f2(x) dx = Ef (X)

is the Local U-statistic

Tn(F, λhn) =
1

n (n− 1)
1

λhn

n∑
i6=j

K

(
Xi −Xj

λhn

)
,

which when
g (x, y) = x− y and t = 0

gives
Tn(F, λhn) = Un(0, λ),
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where for any t

Un(t, λ) :=
(n− 2)!

n!
1

λhn

∑
i∈I2

n

K

(
t− g(Xi1 , Xi2)

λhn

)
.

Local U-Statistic Process

Nearly all of the results in the remainder of these notes are taken from Giné and Mason (2006a,b,c).

Let X, Xi, i ∈N, be i.i.d. random variables taking values in (S,S), a measure space. Further for
m ≥ 1 let

g : Sm 7→ IRd, 1 ≤ d <∞,

be a measurable function and K :IRd 7→IR be a kernel with not necessary compact support. For
t ∈IRd and λ ∈ [a, b], 0 < a ≤ b <∞, we define the local U–statistic

Un(t, λ) :=
(n−m)!

n!

∑
i∈Im

n

Kλhn(t− g(Xi1 , . . . , Xim)),

with
Im
n = {i = (i1, . . . , im) : 1 ≤ ij ≤ n, ij 6= ik if j 6= k} .

Define the local U–statistic process for t ∈IRd, λ ∈ [a, b], 0 < a ≤ b <∞, to be

un(t, λ) :=
√

n {Un(t, λ)−EKλhn(t− g(X1, . . . , Xm))} .

Uniform CLT

We always assume g(X1, . . . , Xm) has density fg and that X, Xi, i ∈ N, are i.i.d. with common
law P such that for each i = 1, . . . ,m, the random variable

g(X1, . . . , Xm), conditionally on Xi = x,

has a density fi(t, x), jointly measurable in t and x, satisfying for each x ∈ IRd, fi(·, x) ∈ L∞
(
IRd
)
.

This condition is not always satisflied. For instance, it does not hold for the function

g(X1, . . . , Xm) = (X1, . . . , Xm).

Definition: CLT for un(t, λ) uniformly in a ≤ λ ≤ b.

For m ≥ 2, we say that the processes un(t, λ) satisfy the CLT uniformly in a ≤ λ ≤ b, if

sup
λ∈[a,b]

∥∥∥∥∥un(t, λ)− αn

(
m∑

i=1

fi(t, ·)

)∥∥∥∥∥
∞

→ 0

and

αn

(
m∑

i=1

fi(t, ·)

)
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converges weakly in the sense of an empirical process indexed by the class of functions

G =

{
m∑

i=1

fi(t, ·) : t ∈ IRd

}
to a Gaussian process Z indexed by the class G.

Definition: Here is what we mean by weak convergence of αn.

Let l∞ (F) denote the space of bounded functions on F . We equip l∞ (F) with the supremum
norm. Clearly αn ∈ l∞ (F). We say that αn converges weakly uniformly in f ∈ F to a Gaussian
process Z indexed by the class F taking values in l∞ (F) if for all functions

H : l∞ (F)→ IR,bounded and continuous,

we have
E∗H (αn)→ E (H (Z)) .

(E∗ denotes the outer expectation. For more details refer to pages 209-210 of de la Peña and Giné
(1999).)

Definition: Compact LIL for un(t, λ) uniformly in a ≤ λ ≤ b

For m ≥ 2, we say that the processes , . . . , satisfy the compact LIL uniformly in a ≤ λ ≤ b, if a.s.

supλ∈[a,b] ‖un(t, λ)− αn (
∑m

i=1 fi(t, ·))‖∞√
log log n

→ 0

and the class of functions

G =

{
m∑

i=1

fi(t, ·) : t ∈ IRd

}
is P -separable and satisfies the compact LIL for the class G. (We shall define this soon.) In
particular this implies that

lim sup
n→∞

sup
λ∈[a,b]

‖un(t, λ)‖∞√
2 log log n

= sup
t∈IRd

σg (t) , a.s. (LIL)

where

σ2 (t) = V ar

(
m∑

i=1

fi(t, X).

)
.

(For the definition of the compact LIL refer to Chapter 8 of Ledoux and Talagrand (1991).) In
these notes we are only interested in the conclusion that (LIL) holds.

Gine and Mason (2006) also derive CLT and LIL for un(·, λ) in Lp

(
IRd
)

for 1 ≤ p <∞. For the
sake of brevity we shall only discuss sup norm results.

Returning to Example 3

Under suitable regularity conditions we get

sup
λ∈[a,b]

∣∣∣∣∣Tn(F, λhn)− T (F )− 2
n

n∑
i=1

(f(Xi)− T (F ))

∣∣∣∣∣ = op

(
1/
√

n
)
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and with probability 1

sup
λ∈[a,b]

∣∣∣∣∣Tn(F, λhn)− T (F )− 2
n

n∑
i=1

(f(Xi)− T (F ))

∣∣∣∣∣ = o
(√

log log n/
√

n
)

.

The last statement implies that

lim sup
n→∞

±
√

n√
2 log log n

sup
λ∈[a,b]

{Tn(F, λhn)− T (F )}

= σ (f) = 2
√

Ef2 (X)− (Ef(X))2.

Tools and Methods of Proof

Hoeffding Decomposition

Let L be a function of m variables, symmetric in its entries. Then, for 1 ≤ k ≤ m, the Hoeffding
projections with respect to P are defined as

πkL(x1, . . . , xk) = (δx1 − P )× · · · × (δxk
− P )× Pm−k(L)

with π0L = EL(X1, . . . , Xm).

The Hoeffding decomposition states the following:

(n−m)!
n!

∑
i∈Im

n

L(Xi1 , . . . , Xim)−EL =: U (m)
n (L)−EL

=
m∑

k=1

(
m

k

)
U (k)

n (πkL).

Assuming L is in L2(Pm), this is an orthogonal decomposition and

E (πkL |X2, . . . , Xk ) = 0 for k ≥ 1,

that is, the kernels πkL are canonical for P . Also, πk, k ≥ 1, are nested projections, that is
πk ◦ π` = πk if k ≤ `.

The Resulting Expansion

The function Kh(t − g(X1, . . . , Xm)) is not necessarily symmetric in its entries, but we can sym-
metrize it as

Kh(t, x1, . . . , xm) :=
1
m!

∑
σ∈ρm

Kh(t− g(xσ(1), . . . , xσ(m))),

where ρm are the permutations of 1, . . . ,m. Then, clearly, for each t ∈IRd,

Un(t, λ)−EKλhn(t− g(X1, . . . , Xm))
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= U (m)
n (Kλhn(t, ·, . . . , ·))−EKλhn(t, X1, . . . , Xm).

Moreover, we get

un(t, λ) =
√

n

m∑
k=1

(
m

k

)
U (k)

n (πkKλhn(t, ·)).

Smoothed Empirical Process

It turns out that the first term of this expansion,

√
nmU (1)

n (π1Kλhn(t, ·)) =
m√
n

n∑
i=1

π1Kλhn(t, Xi), (1)

is a smoothed empirical process (as studied by Yukich (1992), van der Vaart (1994) and Rost (1999)).

This term controlls both the CLT and LIL for the local U-statistic process un (t, λ).

We shall confine our discussion to describing the tools that lead to the LIL.

These tools should have many uses in other contexts. The CLT follows similarly.

A General Proposition for LIL

Assume that X, Xk, k ∈N, are i.i.d. with common law P such that for each i = 1, . . . ,m, the
random variable g(X1, . . . , Xm), conditionally on Xi = x, has a density fi(t, x), jointly measurable
in t and x, satisfying for each x ∈IRd, fi(·, x) ∈ L∞

(
IRd
)
. Also assume for each i = 1, . . . ,m, a.s.

lim
δ↘0

lim sup
n

sup
|u−v|≤δ

|αn(fi(u, ·)− fi(v, ·))|√
log log n

= 0; (2)

lim sup
n

sup
t∈IRd

|αn (fi(t, ·))|√
log log n

<∞. (3)

Proposition 2. Whenever hn ↘ 0, under the above assumptions, we have uniformly in a ≤ λ ≤ b,
a.s. ∥∥∥√n

(
mU

(1)
n (π1Kλhn(t, ·))

)
− αn (

∑m
i=1 fi(t, ·))

∥∥∥
∞√

log log n
→ 0.

*The analogous General Proposition holds for the CLT with
√

log log n removed and convergence
almost surely replaced by convergence in probability.

LIL for the Local U-Statistic Process

It is clear by Proposition 2 and the Hoeffding expansion, that to determine conditions under which
un (·, λ) considered as a process taking values on `∞(IRd) indexed by λ ∈ [a, b] obeys a compact LIL
uniformly in a ≤ λ ≤ b, as defined above, it suffices to impose conditions so that simultaneously
those needed for Proposition 2 and the compact LIL are in effect and so that a.s., for k = 2, . . . ,m,

sup
a≤λ≤b

√
n
∥∥∥U (k)

n (πkKλhn(t, ·, . . . , ·))
∥∥∥
∞√

log log n
→ 0.
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*Again an analogous CLT statement holds.

Compact LIL for the Empirical Process

Recall that a class F satisfies the compact LIL for P whenever the sequence{
αn (f)√
2 log log n

: f ∈ F
}∞

n=1

is a.s. relatively compact in `∞(F) with set of limit points

H =
{
f 7→ E {(f(X)− Pf)h(X)} : Eh2(X) ≤ 1

}
.

In particular, assuming separability, if EF 2 < ∞, where F is the envelope function of the class
F , and F is P -Donsker then F satisfies the compact LIL. (Donsker just means that the empirical
process αn indexed by F converges weakly.)

Applying the compact LIL for empirical processes of Ledoux and Talagrand (1988, 89), we see
that for both our general proposition and the compact LIL to hold it is enough for the classes of
functions

Fi :=
{

fi(t, ·) : t ∈ IRd
}

to be P -Donsker and separable for the law P of X,

EF 2
i (X) <∞, where Fi(x) = sup

t∈IRd

fi(t, x),

and Var(fi(u, X)− fi(v,X)) is uniformly continuous.

A Useful Class of Functions

Let X, X1, X2, . . . be a sequence of i.i.d. random variables in IRd. Let Hk denote a countable class
of measurable functions defined on IRdk such that each H ∈ Hk is symmetric in its arguments and
for any 1 ≤ i ≤ k

EH (x1, . . . , xi−1, X, xi+1, . . . , xk) = 0.

For any n ≥ k and H ∈ Hk set

Un (H) =
∑
i∈Ik

n

H (Xi1 , . . . , Xik)

and
Sn := sup

H∈Hk

|Un(H)| .

Just like we required the two ngredients of an exponential inequality and a moment bound to study
the local empirical process, we shall need two such ingredients to investigate the local U–statistic
process.

Ingredient 1: Major’s Inequality

For any functional Ψ defined on a class of functions F set

‖Ψ(f)‖F = sup
f∈F
|Ψ(f)|.
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Assume Un (H) is as above and that Hk is VC and bounded. Choose

σ2 ≥ sup
H∈Hk

EH2(X1, . . . , Xk).

Then, there exist constants C1, C2, C3 depending only on k and the characteristics of the class Hk

such that

P


∥∥∥∥∥
∑

i∈Ik
n

H(Xi1 , . . . , Xik)

nk/2

∥∥∥∥∥
Hk

> y

 ≤ C1 exp
(
−C2

( y

σ

)2/k
)

,

whenever y satisfies

nσ2 ≥
( y

σ

)2/k
≥ C3 log

(
2
σ

)
.

Ingredient 2: A Moment Bound

Consider a class of measurable functions F defined on (Sm,Sm) taking values in [−1, 1], and assume
that 0 ∈ F . Our object is to obtain a bound for

E‖U (k)
n (πkf)‖F

where F is of VC type and is suitably measurable.

Theorem Let F be a collection of measurable functions Sm 7→IR symmetric in their entries with
absolute values bounded by 1 and let P be any probability measure on (S,S) (with Xi i.i.d. P ).
Assume F is V C with respect to the envelope function F = 1 with characteristics A and v, then
for every m ∈N, A ≥ em, v ≥ 1, there exist constants C1 := C1(m,A, v) and C2 = C2(m,A, v)
such that, for k = 1, . . . ,m,

nkE
∥∥∥U (k)

n (πkf)
∥∥∥2

F
≤ C2

12kσ2

(
log

A

σ

)k

,

assuming

nσ2 ≥ C2 log
(

A

σ

)
,

where σ2 is any number satisfying
‖Pmf2‖F ≤ σ2 ≤ 1.

Application of Ingredients 1 and 2

Assume now that Hk is VC and bounded and let

σ2 ≥ sup
H∈Hk

EH2(X1, . . . , Xk).

Then, Major’s inequality and a martingale inequality due to Brown (1971) can be adapted to show
that there exist constants C1, C2, C3 depending only on k and the VC characteristics of the class
Hk such that for any 0 < c < 1 and all y = x/2 as above

Pr
{

maxk≤m≤n Sm

nk/2
> x

}
≤

C
1/2
1 exp

(
−C2

2

(
cx
σ

)2/k
)(

E
(
Sn/nk/2

)2)1/2

x(1− c)
,
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where
Sn := sup

H∈Hk

|Un(H)| ,

and for a suitable class of functions F

Hk = {πkf : f ∈ F} .

Refer to the Appendix to see how this maximal inequality is derived.

Further Calculation

Assume for some c > 1
c−1hn ≤ h2n ≤ chn

and
nhn log log n/ (log log n ∨ log (1/hn))2 →∞.

We get after some calculation using our moment bound and the maximal inequality on a Sn defined
via a suitable Hk on the blocks 2r−1 ≤ n ≤ 2r, r ≥ 1, in combination with the Borel–Cantelli lemma
that for k = 2, . . . ,m,

√
n√

log log n
sup

a≤λ≤b
sup
t∈IRd

∣∣∣U (k)
n (πkKλhn(t, ·))

∣∣∣ = O

(
(log log n ∨ log (1/hn))k/2

n
k−1
2 h

1/2
n
√

log log n

)
, a.s.

which gives for k = 2, . . . ,m,

lim
n→∞

√
n√

log log n
sup

a≤λ≤b
sup
t∈IRd

∣∣∣U (k)
n (πkKλhn(t, ·))

∣∣∣ = 0, a.s.

This implies by Proposition 2 that the LIL holds for un (t, λ) in the sup norm.

Recapping Everything

1. Assume for each x ∈ S;
K =

{
K (t− ·γ) : γ ≥ 1, t ∈ IRd

}
is a bounded point–wise measurable class and is VC for some A ≥ 3 and v ≥ 1;
2. the random variable g(X1, . . . , Xm) has a bounded density fg with respect to Lebesgue measure
on IRd;
3. for each i = 1, . . . ,m, the class of functions Fi := {fi(t, ·) : t ∈ IRd} is P -Donsker and separable,
where the conditional densities fi(t, x) are jointly measurable in t and x;.
4. for each i = 1, . . . ,m,

EF 2
i (X) <∞, where Fi(x) = sup

t∈IRd

fi(t, x);

5. for each i = 1, . . . ,m, (IRd, | · |) 7→ (IRd, ρi) is uniformly continuous, where

ρ2
i (u, v) = Var(fi(u, X)− fi(v,X));
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6. hn → 0 and for some c > 1
c−1hn ≤ h2n ≤ chn;

7. as n→∞,
nhn log log n/ (log log n ∨ log (1/hn))2 →∞.

Then, the processes un(t, λ) satisfy the compact LIL in L∞(IRd) uniformly in a ≤ λ ≤ b. The
uniform CLT also holds under these conditions.

Summary

To quickly summarize we get dramatically different behavior according as m = 1 or m ≥ 2. Subject
to regularity, when m = 1,

lim
n→∞

sup
a≤λ≤b

sup
t∈IRd

√
λhn |un (t, λ)|√
2 log (1/hn)

= ||K||2 sup
z∈IRd

√
fg (z), a.s.

where fg is the density of g (X) . Whereas, for m ≥ 2

lim sup
n→∞

sup
a≤λ≤b

sup
t∈IRd

|un (t, λ)|√
2 log log n

= sup
t∈IRd

σg (t) , a.s.

where

σ2
g (t) = V ar

(
m∑

i=1

fi(t, X)

)
.

Likewise the uniform CLT holds for un (t, λ) for m ≥ 2 but only pointwise for
√

hnun (t, λ) when
m = 1.

Further Application of our Tools

Giné and Mason (2006c) have used these tools to study uniform in bandwidth consistency of a
class of local U-statistic type estimators introduced by Levit (1978) of the following general class
of integral functionals of the cumulative distribution:

T (F ) =
∫

IR
ϕ(x, F (x), F (1)(x), ..., F (r)(x)) dF (x) ,

where F is a cumulative distribution function on IR with r ≥ 1 derivatives F (m), 1 ≤ m ≤ r,.

Example 3 given above is a special case. Here

T (F ) =
∫

IR
f (x) dF (x) =

∫
IR

f2 (x) dx,

and the Levit estimator of this T (F ) becomes the local U-statistic Tn(F, hn) introduced above.

Representation of Estimators of T (F )

Giné and Mason (2006c) have considered estimation of T (F ) by the Levit (1978) type estimator

T̂n(F ) =
1
n

n∑
i=1

ϕ(Xi, F̂n(Xi), F̂n
(1)

(Xi), ..., F̂n
(r)

(Xi)) ,

13



for appropriate U-statistic-type estimators

F̂n, F̂n
(1)

, ..., F̂n
(r)

of F, F (1), ..., F (r).

We show that for suitable i.i.d. Y1, Y2, . . . ,

T̂n(F )− T (F ) =
1
n

n∑
i=1

Yi + Rn ←− [Remainder Term]

For Example 3

Tn(F, hn) = T̂n(F ) =
1

n(n− 1)hn

∑
i6=j

K

(
Xi −Xj

hn

)
and

T̂n(F )− T (F ) =
2
n

n∑
i=1

{f (Xi)− T (F )}+ Rn.

We prove that Rn converges to zero in various senses and rates using the techniques that we have
just described.
We also establish uniform in bandwidth versions of these results.

Conditional U-Statistics Estimation

Let (X1, Y1) , . . . , (Xn, Yn) be i.i.d. with common joint density fX,Y and let ϕ (Y1, . . . , Ym) be a
function of Y1, . . . , Ym. Consider the regression function

H
(−→

t
)

= E (ϕ (Y1, . . . , Ym) |X1, . . . , Xm) =
−→
t ),

where
−→
t = (t1, . . . , tm) .

Stute (1991) studied pointwise consistency of the conditional U–statistic estimator of H
(−→

t
)

given
by

Ĥn

(−→
t ;hn

)
=

∑
(i1,...,im)∈Im

n
ϕ (Yi1 , . . . , Yim) K

(
t1−Xi1

hn

)
. . .K

(
tm−Xim

hn

)
∑

(i1,...,im)∈Im
n

K
(

t1−Xi1
hn

)
. . .K

(
tm−Xim

hn

) .

Uniform in Bandwidth Consistency of the Estimator

Recently Dony and Mason have applied the methods developed in Einmahl and Mason (2005) and
Giné and Mason (2006a,b) to show that under appropriate regularity conditions, with probability
1,

lim sup
n→∞

sup
an≤h≤bn

√
h

log (1/h)
sup

−→
t ∈[a,b]m

∣∣∣Ĥn

(−→
t ;h

)
−H

(−→
t
)∣∣∣ <∞,

for −∞ < a < b < ∞, an < bn, an → 0, bn → 0 and bn/an → ∞ at rates depending upon the
moments of ϕ (Y1, . . . , Ym) .

This is a generalization of a result of Einmahl and Mason (2005), who prove it for the case m = 1.

Appendix
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VC Classes of Functions

Recall that we say that a class of measurable P -square integrable functions F defined on a measur-
able space (S,S) is VC–type or VC (VC for Vapnik and Červonenkis) with respect to an envelope
F (meaning a measurable function F such that |f | ≤ F for all f ∈ F) if the covering number

N(F , L2(Q), ε),

defined as the smallest number of L2(Q) open balls of radius ε required to cover F , satisfies

N(F , L2(Q), ε) ≤
(

A‖F‖L2(Q)

ε

)v

, 0 < ε ≤ 2‖F‖L2(Q),

for some A ≥ 3 and v ≥ 1, for every probability measure Q on S. If this holds for F , then we say
that the VC class F admits the characteristics A and v.

There are a lot of VC classes. Here is a way to generate them. Let Ψ : IR 7→ IR be a function of
bounded variation on IR (Ψ is the difference of two bounded non-decreasing functions). The proof
of Lemma 22 in Nolan and Pollard (1987) shows that if

K(x) = Ψ(p(x)), x ∈ IRd, (4)

where p is either a real polynomial on IRd or the α–th power of the absolute value of a real
polynomial on IRd, α > 0, then the class of functions

K =
{

K
(
γ−1 (t− ·)

)
: t ∈ IRd, γ > 0

}
is VC–type.

Point–wise Measurable

A class of functions F is a point–wise measurable class whenever there exists a countable subclass
F0 of F such that we can find for any function g ∈ F a sequence of functions {gm} in F0 for which

gm(z)→ g(z), z ∈ IRd.

This condition is discussed in van der Vaart and Wellner (1996). It is satisfied for the class

K =
{

K
(
γ−1 (t− ·)

)
: t ∈ IRd, γ > 0

}
whenever K is right continuous.

A Useful Submartingale and a Maximal Inequality

Let X, X1, X2, . . . be a sequence of i.i.d. random variables in IRd. Let Hk denote a countable class
of measurable functions defined on IRdk such that each H ∈ Hk is symmetric in its arguments and
for any 1 ≤ i ≤ k

EH (x1, . . . , xi−1, X, xi+1, . . . , xk) = 0.

For any n ≥ k and H ∈ Hk set

Un (H) =
∑
i∈Ik

n

H (Xi1 , . . . , Xik)

15



and
Sn := sup

H∈Hk

|Un(H)| .

Let Fn denote the smallest sigma field generated by X1, . . . , Xn. Clearly

E (Un+1 (H) |Fn) = Un(H)

and hence (Sn|Fn)n≥k is a submartingale since

E

(
sup

H∈Hk

|Un+1 (H)| |Fn

)
≥ Sn.

Next by a result of Brown (1971), see Inequality 2 on page 870 of Shorack and Wellner (1986)), for
any γ > 0 and 0 < c < 1,

Pr
{

max
k≤m≤n

Sm > γ

}
≤

∫
{Sn>cγ} SndP

γ(1− c)
,

which gives

Pr
{

max
k≤m≤n

Sn > γ

}
≤

Pr {Sn > cγ}1/2 (ES2
n

)1/2

γ(1− c)
.

This is the maximal inequality that was used in conjunction with Ingredients 1 and 2 in the notes.
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