Estimating conditional extremes

Keith Knight University of Toronto

e-mail: keith@utstat.toronto.edu

homepage: www.utstat.toronto.edu/keith/home.html

Research supported by NSERC

Outline of talk

- I. Introduction
- II. Estimation
- M-estimation
- invariance in location case
- III. Asymptotics
- point process convergence
- epi-convergence in distribution
- asymptotics for M-estimators
- IV. Other things
- Barrier regularization
- "Soft" extremes

I. Introduction

Consider a linear regression model with positive errors:

$$Y_i = \boldsymbol{x}_i^T \boldsymbol{\beta} + W_i \quad (i = 1, \dots, n)$$

where the W_i 's are independent with

ess inf
$$W_i = 0$$

$$P(W_i \le w | \boldsymbol{x}_i) = \lambda(\boldsymbol{x}_i) w^{\alpha} L(w) \quad (\alpha > 0).$$

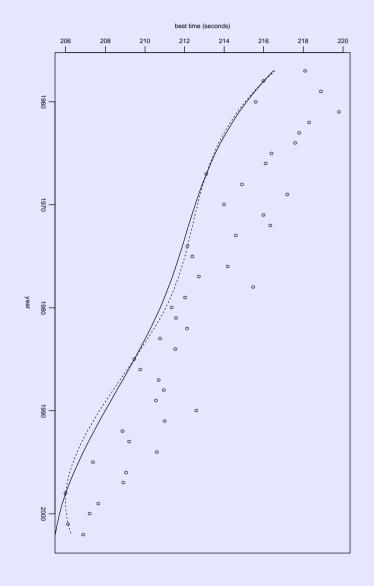
$$(L(w) \text{ slowly varying at } 0.)$$

- We can view $x_i^T \beta$ as conditional minimum of Y_i .
- This type of model is also appropriate for "record" data.

1957 to 2002: Example: Yearly best times in men's (outdoor) 1500m races from

$$Time(year) = g(year) + W(year)$$

where g can be interpreted as the absolutely best possible time.



Spline estimates (4 knots) using constrained least squares and L_1 estimation

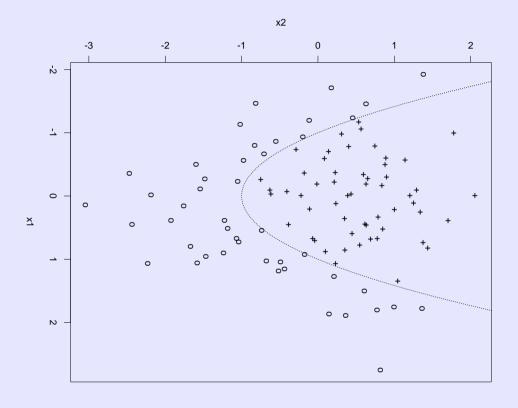
- Intuitively, we should be able to estimate β most efficiently when the boundary is well-defined by the observations $\Rightarrow W_i$'s have significant probability mass around 0.
- Similar issues arise in
- production frontier estimation (Aigner & Chu, 1968; Simar & Wilson, 2000; Florens & Simar, 2002)
- estimation of point process boundaries (e.g. Girard & Menneteau, 2003; Bouchard et al., 2003).
- asymptotics ⇒ Different models but similar issues in estimation and

- We are assuming that $\{W_i\}$ are in the domain of attraction of a Type III extreme value (Weibull) distribution.
- In this case, the conditional minimum is well-defined.
- We can also consider properties of estimators for $\{W_i\}$ in other extreme value domains of attraction.

- Similar problems arise also in classification, particularly when we can assume "separability".
- Data consist of "feature" $\{x_i\}$ and classes labelled by $\{Y_i\}$ assume simple case $Y_i = \pm 1$
- Classification rule: $\widehat{Y} = \text{sgn}(\widehat{g}(\boldsymbol{x}))$, for example, $\widehat{g}(\boldsymbol{x}) = \boldsymbol{x}^T \widehat{\boldsymbol{\beta}}$.
- Maximum margin estimator: Maximize $h \ge 0$ subject to

$$Y_i \boldsymbol{x}_i^T \boldsymbol{\beta} \ge h \quad \text{for } i = 1, \dots, n$$

and $\|\beta\|_1 = 1$.



II. Estimation

1. M-estimation

• Minimal requirement for $\widehat{\beta}$:

$$Y_i \geq \boldsymbol{x}_i^T \widehat{\boldsymbol{\beta}} \quad \text{for all } i$$

(since $Y_i \geq \boldsymbol{x}_i^T \boldsymbol{\beta}$ for all i).

Pseudo-ML consideration: Assume the W_i 's have a density

$$f(w) = \exp(-\rho(w)) \quad (w > 0)$$

 $\rho(w) \to \infty$ as $w \to \infty$. Then the MLE $\widehat{\boldsymbol{\beta}}_n$ minimizes

$$\sum_{i=1}^n
ho(Y_i - oldsymbol{x}_i^T oldsymbol{\phi}) \quad ext{subject to} \quad Y_i \geq oldsymbol{x}_i^T oldsymbol{\phi}$$

for $i = 1, \dots, n$.

- Aigner & Chu (1968) consider estimation with $\rho(w) = w$ and $\rho(w) = w^2$ for estimating production frontier functions
- For $\rho(w) = w$, $\widehat{\beta}_n$ is the solution of a linear programming $\alpha \to 0$, β is the limit of estimator (Koenker & Bassett, 1978) of order $\alpha = 0$; that is, as problem and can also be viewed as a regression quantile

$$rgmin \sum_{i=1}^{n}
ho_{lpha}(Y_i - oldsymbol{x}_i^Toldsymbol{eta})$$

where $\rho_{\alpha}(x) = x[\alpha - I(x < 0)].$

Asymptotics for this estimator are given by Smith (1994), regularity conditions. Portnoy & Jureckova (1999), and Knight (2001) under various

Assume smoothness for ρ :

$$\rho(w) = \int_0^w \psi(t) \, dt$$

where ψ is Hölder continuous.

• We will also assume that the right tail of $\{W_i\}$ is not too heavy relative to ψ .

Problem: What are the asymptotics for general ρ ?

- How does the asymptotic behaviour depend on ρ ?
- What determines the asymptotics of $\widehat{\beta}_n$ in general?

2. Location case

In the location case (i.e. $Y_i = \theta + W_i$), the situation is straightforward: If $\widehat{\theta}_n$ minimizes

$$\sum_{i=1}^{n} \rho(Y_i - \phi) \quad \text{subject to} \quad Y_i \ge \phi \quad \text{for all } i$$

then $\widehat{\theta}_n = \min_{i \leq n} Y_i$ (at least for sufficiently large n) over a wide class of ρ with $E[\psi(W_i)] > 0$.

 θ_n inherits the asymptotic properties of $\min_{i\leq n} Y_i$.

setting? Question: How does this "invariance" extend to the regression

Example: 1500 metre data (1957-2002)

Look (again) at estimates for spline basis with with 4 knots using $\rho(w) = w$ (dotted) and $\rho(w) = w^2$ (solid).



dependence on ρ ? Estimates are close but not equal; what determines the

III. Asymptotics

- distribution 1. Convergence of point processes and epi-convergence in
- There are two issues to confront in determining asymptotics for boundary estimators:
- (i) estimators are essentially determined by observations close negligible); to the boundary (i.e. influence of distant observations is
- (ii) "classical" asymptotic techniques are difficult to apply due to the constraints
- We will deal with (i) using point process asymptotics and with (ii) using epi-convergence in distribution.

Point process convergence

Characterize point processes as random integer-valued measures:

$$N(A) = \#$$
 of points lying in A

Convergence of a sequence of point processes $\{N_n\}$ characterized by weak convergence of integrals:

$$N_n \xrightarrow{d} N_0 \quad \text{iff} \quad \int g(t) N_n(dt) \xrightarrow{d} \int g(t) N_0(dt)$$

for all bounded continuous functions g with compact support.

If N_0 is a Poisson process (i.e. $N_0(A) \sim \operatorname{Pois}(\lambda(A))$ for each A) then the $\stackrel{d}{\longrightarrow}$ condition can be simplified.

Epi-convergence in distribution

- Suppose that U_n minimizes an objective function ξ_n over some (closed) set C_n .
- This is equivalent to minimizing

$$Z_n(\boldsymbol{u}) = \begin{cases} \xi_n(\boldsymbol{u}) & \text{if } \boldsymbol{u} \in C_n \\ +\infty & \text{otherwise} \end{cases}$$

to Z that guarantees **Question:** What's the weakest form of weak convergence of $\{Z_n\}$

$$U_n = \operatorname{argmin}(Z_n) \xrightarrow{d} \operatorname{argmin}(Z)$$

when $\operatorname{argmin}(Z_n) = O_p(1)$ and $\operatorname{argmin}(Z)$ is unique?

1996)**Answer:** Epi-convergence in distribution. (see Pflug, 1994; Geyer,

- Epi-convergence is actually convergence (with respect to the appropriate topology) of the epi-graphs of the objective functions (which are assumed to be lower-semicontinuous).
- For convex objective functions, finite dimensional weak convergence is sufficient for epi-convergence in distribution provided that the limit is finite on an open set.

2. Asymptotics for boundary M-estimators

• $\widehat{\beta}_n$ minimizes

$$\sum_{i=1}^{T}
ho(Y_i - oldsymbol{x}_i^T oldsymbol{\phi})$$
 subject to $Y_i \geq oldsymbol{x}_i^T oldsymbol{\phi}$

for $i=1,\dots,n$ where ρ is convex and reasonably smooth.

Look at case where W_i 's are i.i.d. first; assume that

$$-F(w) = P(W_i \le w) = w^{\alpha}L(w),$$

– for some probability measure μ ,

$$\frac{1}{n}\sum_{i=1}^{n}I(\boldsymbol{x}_{i}\in A)\rightarrow\mu(A).$$

Define $\{a_n\}$ such that $n F(t/a_n) = t^{\alpha} \Rightarrow a_n = n^{1/\alpha} L^*(n)$.

within $O(a_n^{-1})$ of the boundary \Rightarrow point process asymptotics **Key point:** The asymptotics are determined by O(1) points

We start by defining the objective function

$$Z_n(\boldsymbol{u}) = \frac{a_n}{n} \sum_{i=1}^{n} \left[\rho(W_i - \boldsymbol{x}_i^T \boldsymbol{u}/a_n) - \rho(W_i) \right]$$

if $a_n W_i \ge \boldsymbol{x}_i^T \boldsymbol{u}$ for all i with $Z_n(\boldsymbol{u}) = +\infty$ otherwise.

- Note that $a_n(\widehat{\beta}_n \beta) = \operatorname{argmin}(Z_n)$.
- We need to determine the epi-limit of $\{Z_n\}$.
- Assume that $E[\psi^2(W_1)] < \infty$ and some additional regularity conditions

Using point process techniques, we can show that $Z_n \stackrel{e-d}{\longrightarrow} Z$

$$Z(\boldsymbol{u}) = -E[\psi(W_1)] \int \boldsymbol{u}^T \boldsymbol{x} \, \mu(d\boldsymbol{x})$$
$$= -E[\psi(W_1)] \boldsymbol{u}^T \boldsymbol{\gamma}$$
$$\text{if } \Gamma_k \geq \boldsymbol{X}_k^T \boldsymbol{u} \text{ for } k = 1, 2, \cdots$$

and $Z(u) = +\infty$ otherwise.

 $\{(\Gamma_k, \boldsymbol{X}_k) : k \geq 1\}$ are the points of a Poisson process N_0 with $E[N_0(ds \times d\mathbf{x})] = \alpha s^{\alpha - 1} ds \,\mu(d\mathbf{x}).$

 $\{\Gamma_k\}$ and $\{X_k\}$ are independent sequences.

- Then $a_n(\widehat{\beta}_n \beta) \stackrel{d}{\longrightarrow} \operatorname{argmin}(Z)$, which is the solution of a by the Poisson process. linear program where the (random) constraints are determined
- Note that the limiting distribution does not depend on ρ , at least when $E[\psi^2(W_1)] < \infty \Rightarrow asymptotic invariance$

- However, the invariance fails in the non-i.i.d. case where the distribution of W_i depends on x_i .
- Here we have $a_n(\widehat{\beta}_n \beta) \xrightarrow{d} \operatorname{argmin}(Z)$ where

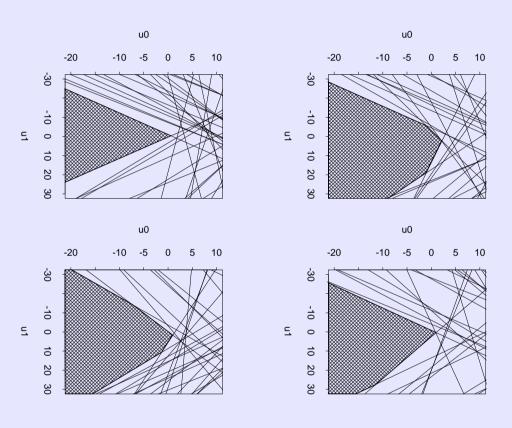
$$Z(oldsymbol{u}) = -\int E[\psi(W|oldsymbol{x})]oldsymbol{x}^Toldsymbol{u}\,\mu(doldsymbol{x}) = -oldsymbol{u}^Toldsymbol{\gamma}(
ho)$$

if $\Gamma_k^* \geq \boldsymbol{X}_k^T \boldsymbol{u}$ for $k = 1, 2, \dots$ and $Z(\boldsymbol{u}) = \infty$ otherwise.

As before, $\{\Gamma_k^*, \mathbf{X}_k\}$ are points of a (possibly different) Poisson process that does *not* depend on ρ .

- Only finite part of the limiting objective function depends on ρ .
- The constraints do not depend on ρ .
- If $\gamma(\rho_1)$ is close to $\gamma(\rho_2)$ then the respective minimizers will be exactly equal with high probability.
- Thus we have "near" invariance.

and $X_k = (1, U_k)$ where $\{U_k\}$ are i.i.d. uniform r.v.'s on [-1, 1]. In this case, $\gamma(\rho) \propto (1, c_{\rho})^T$ where $-1 < c_{\rho} < 1$. **Example:** Look at feasible regions and constraint lines for $\alpha = 1$



Other extreme value domains of attraction

It's possible to extend the results to other extreme value domains of attraction:

- Type I: $P(W < -x) \to 0$ exponentially as $x \to \infty$.

Type II: $P(W < -x) = x^{-\alpha}L(x)$ for $\alpha > 0$ and L slowly varying.

To derive limiting distributions, we need to be careful to define $\rho(w)$ appropriately for w < 0.

IV. Other things

1. Barrier regularization

- $x^T \hat{\beta}_n$ tends to be biased upwards.
- One possible way of removing bias is to add a barrier function to push estimated conditional minimum downwards
- For a positive tuning parameter ϵ define $\beta_n(\epsilon)$ to minimize

$$\sum_{i=1}^n \rho(Y_i - \boldsymbol{x}_i^T \boldsymbol{\phi}) + \epsilon \sum_{i=1}^n \tau(Y_i - \boldsymbol{x}_i^T \boldsymbol{\phi})$$

subject to $Y_i \geq \boldsymbol{x}_i^T \boldsymbol{\phi}$ for all i.

 $\tau(w)$ (barrier function) is a convex function satisfying

$$\lim_{w\downarrow 0} \tau(w) = +\infty.$$

- We can take $\tau(w) = w^{-r}$ for r > 0 or $\tau(w) = -\ln(w)$.
- For a given $\epsilon > 0$, $\widehat{\beta}_n$ lies in the interior of the constraint set;

$$Y_i > \boldsymbol{x}_i^T \widehat{\boldsymbol{\beta}}_n(\epsilon)$$
 for all i

- Computational advantages:
- $\beta_n(\epsilon)$ can be computed using Newton or quasi-Newton methods;
- $\widehat{\beta}_n$ can be obtaining from $\{\widehat{\beta}_n(\epsilon)\}$ by taking $\epsilon \downarrow 0$ interior point algorithms (Fiacco & McCormick, 1990; Koenker & Portnoy, 1997).

Barrier regularized estimates using $\rho(w) = w$ and $\tau(w) = w^{-2}$. best time (seconds) year 0 0

Solid line is the extreme regression quantile line.

2. "Soft" conditional extremes

Idea: Allow a small number of the constraints to be violated.

• Rationale: Robustness

- Estimates of conditional extremes are naturally very sensitive to extreme observations.
- It's often desirable to downweight or ignore such observations in the interest of model fidelity.
- But we don't want to specify a priori the number of constraints to be violated

Note that the M-estimator $\widehat{\beta}_n$ minimizes

$$\sum_{i=1}^n arrho(Y_i - oldsymbol{x}_i^Toldsymbol{\phi})$$

where

$$\varrho(w) = \begin{cases} \rho(w) & \text{for } w \ge 0 \\ +\infty & \text{for } w < 0. \end{cases}$$

• Replace ϱ by the "softened" version

$$\bar{\varrho}(w) = \begin{cases} \rho(w) & \text{for } w \ge 0\\ \epsilon^{-1} \psi(w) & \text{for } w < 0 \end{cases}$$

where $\epsilon > 0$ and $\psi(w) \to +\infty$ as $w \to -\infty$.

- ψ should be a concave function to get the desired result, for example, $\psi(w) = (-w)^r \text{ for } 0 < r < 1$
- Taking $\psi(w)$ to be convex, we get essentially (for small ϵ) regression quantiles.
- Concavity of ψ allows some adaptability and allows for $\beta_n(\epsilon) = \beta_n.$
- More work needs to be done:
- Computational algorithm for $\widehat{\beta}_n(\epsilon)$.
- If we let $\epsilon \downarrow 0$, we get an exterior point algorithm for computing β_n — see Fiacco & McCormick (1990).
- Asymptotics.