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I. Introduction

e Consider a linear regression model with positive errors:

Yi=x{B8+W;, (i=1,---,n)

where the W;’s are independent with

ess inf W; 0
P(W; <w|x;) AMa;))w*L(w) (a > 0).

(L(w) slowly varying at 0.)

e We can view ! 3 as conditional minimum of Y.

e This type of model is also appropriate for “record” data.




Example: Yearly best times in men’s (outdoor) 1500m races from
1957 to 2002:

Time(year) = g(year) + W (year)

where g can be interpreted as the absolutely best possible time.

best time (seconds)

Spline estimates (4 knots) using constrained least squares and L; estimation




e Intuitively, we should be able to estimate 3 most efficiently
when the boundary is well-defined by the observations = W,;’s
have significant probability mass around 0.

e Similar issues arise in

— production frontier estimation (Aigner & Chu, 1968; Simar
& Wilson, 2000; Florens & Simar, 2002)

— estimation of point process boundaries (e.g. Girard &
Menneteau, 2003; Bouchard et al., 2003) .

= Different models but similar issues in estimation and

asymptotics.




e We are assuming that {W;} are in the domain of attraction of

a Type III extreme value (Weibull) distribution.
e In this case, the conditional minimum is well-defined.

e We can also consider properties of estimators for {W;} in other

extreme value domains of attraction.




Similar problems arise also in classification, particularly when

we can assume “separability”.

Data consist of “feature” {x;} and classes labelled by {Y;} —

assume simple case Y; = £1.

P

Classification rule: Y = sgn(g(x)), for example, g(x)

Maximum margin estimator: Maximize h > 0 subject to

Yie; 3>h fori=1---.,n

and ||3||1 = 1.




Maximum margin estimate of a quadratic boundary.




II. Estimation

1. M-estimation

e Minimal requirement for @”
Y; > me for all ¢
(since Y; > =3 for all ).
e Pseudo-ML consideration: Assume the W;’s have a density
f(w) = exp(—=p(w)) (w>0)

p(w) — oo as w — o0o. Then the MLE mz minimizes

M\QG\& — ! ¢) subjectto Y; >ax! ¢
=1

fore=1,---,n.




e Aigner & Chu (1968) consider estimation with p(w) = w and

p(w) = w? for estimating production frontier functions.

For p(w) = w, @: is the solution of a linear programming
problem and can also be viewed as a regression quantile
estimator (Koenker & Bassett, 1978) of order o« = 0; that is, as

AN

a — 0, B is the limit of

argaiiny pa (Vi — a7 B)
1=1

where po () = z|a — I(z < 0)].

Asymptotics for this estimator are given by Smith (1994),
Portnoy & Jureckova (1999), and Knight (2001) under various
regularity conditions.




e Assume smoothness for p:

o) = \ S () de

where 1) is Holder continuous.

e We will also assume that the right tail of {W;} is not too heavy

relative to .




Problem: What are the asymptotics for general p?

e How does the asymptotic behaviour depend on p?

e What determines the asymptotics of w: in general?




2. Location case

e In the location case (i.e. Y; = 0 + W;), the situation is

straightforward: If wfz minimizes

Mbﬁ\w — ¢) subject to Y; > ¢ for all ¢
i=1

then %: = min;<, Y; (at least for sufficiently large n) over a
wide class of p with E[yp(W;)] > 0.

AN

e 0, inherits the asymptotic properties of min;<,, Y;.

Question: How does this “invariance” extend to the regression

setting?




Example: 1500 metre data (1957-2002)

e Look (again) at estimates for spline basis with with 4 knots

using p(w) = w (dotted) and p(w) = w? (solid).

e Estimates are close but not equal; what determines the

dependence on p?




III. Asymptotics

1. Convergence of point processes and epi-convergence in

distribution

e There are two issues to confront in determining asymptotics for

boundary estimators:

(i) estimators are essentially determined by observations close
to the boundary (i.e. influence of distant observations is
negligible);

(ii) “classical” asymptotic techniques are difficult to apply due
to the constraints.

e We will deal with (i) using point process asymptotics and with

(ii) using epi-convergence in distribution.




Point process convergence

e Characterize point processes as random integer-valued
measures:

N(A) = # of points lying in A

e Convergence of a sequence of point processes { NN, }
characterized by weak convergence of integrals:

N, -4 N, iff \ o(t) N, (dt) - \ 4(£) No(dt)

for all bounded continuous functions g with compact support.

e If Ny is a Poisson process (i.e. No(A) ~ Pois(A(A)) for each A)

then the % condition can be simplified.




Epi-convergence in distribution

e Suppose that U,, minimizes an objective function &,, over some
(closed) set C,.

e This is equivalent to minimizing

En(uw) ifuedy

Zin AQV
+00 otherwise

Question: What’s the weakest form of weak convergence of {Z,,}

to Z that guarantees

U, = argmin(Z,) <, argmin(2)

when argmin(Z, ) = O,(1) and argmin(Z) is unique?




Answer: Epi-convergence in distribution. (see Pflug, 1994; Geyer,
1996)

e Epi-convergence is actually convergence (with respect to the

appropriate topology) of the epi-graphs of the objective

functions (which are assumed to be lower-semicontinuous).

e For convex objective functions, finite dimensional weak
convergence is sufficient for epi-convergence in distribution

provided that the limit is finite on an open set.




2. Asymptotics for boundary M-estimators

e 3, minimizes

M\QG\@. — ! ¢) subjectto Y; >ax! ¢
1=1

for 2 =1, ---,n where p is convex and reasonably smooth.

e Look at case where W;’s are i.i.d. first; assume that
— F(w) = P(W; < w) =w*L(w),
— for some probability measure ,
L Mzuz e A) > u(A)
— xXr; — .
e g

Define {a,} such that n F(t/a,) = t* = a, = n'/*L*(n).




Key point: The asymptotics are determined by O(1) points
within O(a, ') of the boundary = point process asymptotics

e We start by defining the objective function

Zo(w) = 237 [p(Wi — &Fu/an) — p(Wy)]

n -
1=1

if a,W; > xlu for all i with Z,(u) = +oo otherwise.

e Note that a, Ams — () = argmin(Z,).

e We need to determine the epi-limit of {Z,, }.

e Assume that E[¢?(WW7)] < oo and some additional regularity

conditions.




e Using point process techniques, we can show that Z,, 4z

where

Z(u) = —E[p(W) \ ol p(de)

—E[yp(Wy)|u'y
if Ty, > Xpufork=1,2, -

and Z(u) = +oo otherwise.

o {(I'x, X%): k> 1} are the points of a Poisson process Ng with

E[No(ds x dz)] = as®* ' ds pu(dx).

e {I'y} and { X} are independent sequences.




e Then a, AW: — B) <, argmin(Z), which is the solution of a

linear program where the (random) constraints are determined

by the Poisson process.

e Note that the limiting distribution does not depend on p, at
least when E[?(W71)] < oo = asymptotic invariance.




e However, the invariance fails in the non-i.i.d. case where the

distribution of W; depends on x;.

e Here we have a, b@: - B) -, argmin(Z) where

Z(u) = — \ E[p(Wz)|oTu u(de) = —uT(p)

if ' > X{wfor k=1,2,--- and Z(u) = oo otherwise.

o As before, {I';, X} are points of a (possibly different) Poisson

process that does not depend on p.




e Only finite part of the limiting objective function depends on p.
— The constraints do not depend on p.
— If v(p1) is close to v(p2) then the respective minimizers will

be exactly equal with high probability.

e Thus we have “near” invariance.

Example: Look at feasible regions and constraint lines for a =1
and X = (1,Uy) where {U} are i.i.d. uniform r.v.’s on [—1,1]. In

this case, v(p) o< (1,¢,)? where —1 < ¢, < 1.
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Other extreme value domains of attraction
e [t’s possible to extend the results to other extreme value
domains of attraction:
— Type I. P(W < —x) — 0 exponentially as z — oo.
— Type II: P(W < —x) = 2~ *L(x) for a > 0 and L slowly

varying.

e To derive limiting distributions, we need to be careful to define

p(w) appropriately for w < 0.




IV. Other things

1. Barrier regularization

Sﬁ@s tends to be biased upwards.

One possible way of removing bias is to add a barrier function

to push estimated conditional minimum downwards.

For a positive tuning parameter € define ®3Amv to minimize

Y oYi—zl¢)+e) 7(Yi-z¢)
1=1 1=1

subject to Y; > x!'¢ for all i.

7(w) (barrier function) is a convex function satisfying

I
lhig T(w)



e We can take 7(w) = w™" for r > 0 or 7(w) = — In(w).

P

e For a given € > 0, 3, lies in the interior of the constraint set;
that is,

Y > mezAmv for all ¢

e Computational advantages:

— W:Amv can be computed using Newton or quasi-Newton
methods;

— m: can be obtaining from &W:Amvw by taking ¢ | 0 —
interior point algorithms (Fiacco & McCormick, 1990;
Koenker & Portnoy, 1997).




best time (seconds)

Barrier regularized estimates using p(w) = w and 7(w) = w—2.

Solid line is the extreme regression quantile line.




2. “Soft” conditional extremes
e Idea: Allow a small number of the constraints to be violated.

e Rationale: Robustness

— Estimates of conditional extremes are naturally very

sensitive to extreme observations.

— It’s often desirable to downweight or ignore such

observations in the interest of model fidelity.

e But we don’t want to specify a priori the number of constraints

to be violated.




e Note that the M-estimator @: minimizes

> oY — x] ¢)
1=1

p(w) for w >0
o(w) =
+o0o  for w < 0.

e Replace p by the “softened” version

p(w) for w >0
e 1Y(w) for w <0

where € > 0 and ¢(w) — +00 as w — —o0.




e 7 should be a concave function to get the desired result, for
example, Y(w) = (—w)" for 0 < r < 1.

— Taking ¥ (w) to be convex, we get essentially (for small ¢)

regression quantiles.
— Concavity of ¢ allows some adaptability and allows for

=03,.

e More work needs to be done:

— Computational algorithm for W:A ).

— If we let € | 0, we get an exterior point algorithm for
computing 3, — see Fiacco & McCormick (1990).

— Asymptotics.




